首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Shake-up transitions involving QW hole subbands have been observed as satellites in selective photoluminescence spectra of undoped GaAs/AlGaAs QWs. These shake-up transitions are explained in terms of an interaction between localized exciton and valence-band hole states attached to the QW subbands, in which holes are shaken up from the n=1 heavy hole subband to higher subbands, either the n=1 light hole subband or the n=2 heavy hole subband. The required localization is due to the interface roughness; thus these new transitions are of intrinsic origin. From the observation of the intersubband shake-up processes we derive direct information about the hole inter-subband energies. Furthermore, the satellite intensity is strikingly enhanced in the presence of a magnetic field due to an increasing exciton localization related to the compression of its wave function in the field. The exciton wave function compression continues until its radius in the plane of the well is comparable with the radius of the "flat island" characterized by constant QW width. Accordingly, from the magnetic field dependence of the shake-up satellite intensity we can roughly estimate the size of the "flat islands" and consequently probe the interface roughness.  相似文献   

3.
We present the results of optical, steady-state and time-resolved studies of photoluminescence and photoluminescence excitation in high-quality Al0.3Ga0.7As/GaAs quantum wells in which the presence of large (larger than the exciton radius) atomically flat islands can be inferred, identical to the case of interrupted MBE growth. Migration of excitons towards lower-lying energy states induced by local potential fluctuations and/or progressive localisation has been revealed and the transition rate between quantum well regions 24 to 25 monolayers thick has been derived to be 290 ps−1.  相似文献   

4.
Variations in the width of a quantum well (QW) are known to be a source of broadening of the exciton line. Using low temperature near-field optical microscopy, we have exploited the dependence of exciton energy on well width to show that in GaAs QWs, these seemingly random well-width fluctuations actually exhibit well-defined order-strong long-range correlations appearing laterally, in the plane of the QW, as well as vertically, between QWs grown one on top of the other. We show that these fluctuations are correlated with the commonly found mound structure on the surface. This is an intrinsic property of molecular beam epitaxial growth.  相似文献   

5.
Quasi-continuous-wave operation of AlGaAs/GaAs-based quantum cascade lasers (λ9 μm) up to 165 K is reported. The strong temperature dependence of the threshold current density and its higher value in high duty cycle is investigated in detail. The self-heating effect in the active region is explored by changing the operating duty cycles. The degradation of lasing performance with temperature is explained.  相似文献   

6.
Radiative coupling of resonantly excited intersubband transitions in GaAs/AlGaAs multiple quantum wells can have a strong impact on the coherent nonlinear optical response, as is shown by phase and amplitude resolved propagation studies of ultrashort electric field transients. Upon increasing the driving field amplitude, strong radiative coupling leads to a pronounced self-induced absorption, followed by a bleaching due to the onset of delayed Rabi oscillations. A many-particle theory including light propagation effects accounts fully for the experimental results.  相似文献   

7.
The problem of intersubband relaxation in GaAs/GaAs quantum wells, where the energy separation of the two lowest subbands is smaller than the optical phonon energy, is considered. Time resolved pump-and-probe measurements are performed with a far-infrared free-electron laser on two multiquantum well samples with similar thicknesses (≈300 Å), but different doping and mobilities. The measured lifetimes are shorter than could be explained by acoustic phonon emission alone. Monte-Carlo calculations show the importance of electron–electron scattering for thermalization of the hot electron distribution function and subsequent optical phonon emission from the long thermal tail.  相似文献   

8.
We report the first measurements of the interaction of non-equilibrium phonons with two-dimensional exciton gases (2DExGs). The rise in the effective temperature of the 2DExG produced by the phonons depends on the width of the quantum well and the exciton sheet density and hence on the ratio τ?1 (ex-ph)/τ?1 (ex-ex). The dependence of the effective temperature rise on this ratio is attributed to the non-equilibrium frequency distribution of the phonons incident on the 2DExG.  相似文献   

9.
A population inversion study of GaAs/AlxGa1-x As three-quantum-well quantum cascade structures is presented. We derive the population inversion condition (PIC) of the active region (AR) and discuss the PICs on different structures by changing structural parameters such as the widths of quantum wells or barriers in the AR. For some instances, the PIC can be simplified and is proportional to the spontaneous emission lifetime between the second and the first excited states, whereas some other instances imply that the PIC is proportional to the state lifetime of the second excited state.  相似文献   

10.
Transient photoluminescence of GaAs/AlGaAs quantum wires and quantum dots formed by strain confinement is studied as a function of temperature. At low temperature, luminescent decay times of the wires and dots correspond to the radiative decay times of localized excitons. The radiative decay time can be either longer or shorter than that of the host quantum well, depending on the size of the wires and dots. For small wires and dots (∼ 100 nm stressor), the exciton radiative recombination rate increases due to lateral confinement. Exciton localization due to the fluctuation of quantum well thickness plays an important role in the temperature dependence of luminescent decay time and exciton transfer in quantum wire and dot structures up to at least ∼ 80 K. Lateral exciton transfer in quantum wire and dot structures formed by laterally patterning quantum wells strongly affects the dynamics of wire and dot luminescence. The relaxation time of hot excitons increases with the depth of strain confinement, but we find no convincing evidence that it is significantly slower in quasi 1-D or 0-D systems than in quantum wells.  相似文献   

11.
The photoluminescence linewidths and excition lifetimes of free excitons in GaAs/AlGaAs multiple quantum wells were systematically investigated as a function of temperature, quantum well width, and carrier density. The experimental results showed that the exciton decay processes were strongly related to the linewidth of the exciton and the exciton binding energy.  相似文献   

12.
From the view of electron waving, taking account of the electron wave reflections at the interface between the well and the potential barrier layer we discuss the electronic states above the barriers in a GaAs/AlGaAs superlattice. We present a new method on calculating the breadth of the subband and the calculated breadth of GaAs/AlGaAs superlattice is in good agreement with experimental results.  相似文献   

13.
A study is reported of exciton luminescence in GaAs double quantum wells produced in electric and magnetic fields. It has been found that the indirect-exciton line (IX) behaves anomalously, namely, one observes a magnetic-field-induced low-energy shift of the IX line, and the onset of periodic (≈5 s) fluctuations in the IX-line intensity. Fiz. Tverd. Tela (St. Petersburg) 40, 803–805 (May 1998)  相似文献   

14.
The influence of gallium arsenide surface modification induced by irradiation with a KrF excimer laser on the magnitude of the quantum well (QW) intermixing effect has been investigated in InAlGaAs/AlGaAs/GaAs QW heterostructures. The irradiation in an air environment with laser pulses of fluences between 60 and 100 mJ/cm2 has resulted in the formation of a gallium oxide-rich film at the surface. Following the annealing at 900 °C, up to 35 nm suppression of the band gap blue shift was observed in all the laser irradiated samples when compared to the non-irradiated samples. The origin of suppression has been discussed in terms of stress controlled diffusion. PACS 78.55.Et; 66.30.Lw; 73.21.Fg  相似文献   

15.
We report on the carrier dynamics in n-type double-barrier quantum well structures in an electric field. Both the intersubband and interband photocurrents, excited by long-wavelength (4μm) and short-wavelength (0.5μm) radiation, respectively, show a photovoltaic asymmetry with respect to the applied field. This asymmetry arises from an internal field due to an asymmetric dopant distribution with respect to the well centers. Time-dependent photoluminescence measurements allow us to determine the field dependence of the electron and hole capture times.  相似文献   

16.
The operation of a unipolar quantum cascade light-emitting diode based on the material system GaAs/AlGaAs is reported. The LED operates at a wavelength of 6.9 μm. Detailed analysis of the electroluminescence spectra shows a linewidth as narrow as 14 meV at cryogenic temperatures, increasing to 20 meV at room temperature. For typical drive-current densities of 1 kA/cm2 the optical output power lies in the ten 10 nW range. Additional absorption and photocurrent measurements provide a complete characterization of the mid-infrared emitter.  相似文献   

17.
In this work, we demonstrate the thin AlAs layer insertion into GaAs/AlGaAs quantum well (QW) structures and its influence in energy transition in the frequency range of mid-infrared. To realize the more accurate calculation, the graded interface model of QW structures is integrated into our self-consistent solving of Schrodinger and Poisson equations to obtain the energy level and envelope wave functions of QW. We find the thin AlAs layer inserted at various positions in the well can obviously tune intersubband optical transitions. The corresponding tuning range can be 50 meV. We find that the thicker AlAs layer (2 monolayers) can provide wider tuning range and larger oscillator strength between subbands 1 and 3, compared with the thinner one (1 monolayer). Our results suggest that thin semiconductor layer may be an idea optimization design for the quantum well terahertz lasers which are based on optical pumping with mid-infrared lasers.  相似文献   

18.
We report the reduced waveguiding efficiency for the signals around 1560 nm as the injection current of an GaAs/AlGaAs multiple quantum well laser diode (lasing wavelength at 840 nm) with a ridge-loading waveguide configuration increased. This reduction trend stopped when the injection current reached the threshold condition of the laser diode. The decreased waveguide transmission and the more expanded mode profile indicated the variation of the effective refractive index gradient in the lateral dimension with injection current. This variation was due to the refractive index decrease with increasing carrier density even below band gap. A slab waveguide model was used to simulate the lateral mode profile variation with injection current. The refractive index differences between the guiding layer and claddings in the slab waveguide model provided estimates of refractive index contrasts of the laser diode at a concerned wavelength under various injection conditions.  相似文献   

19.
We present a computer simulation of exciton–exciton scattering in a quantum well. Specifically, we use quantum Monte Carlo techniques to study the bound and continuum states of two excitons in a 10 nm wide GaAs/Al0.3Ga0.7As quantum well. From these bound and continuum states we extract the momentum-dependent phase shifts for s-wave scattering. A surprising finding of this work is that a commonly studied effective-mass model for excitons in a 10 nm quantum well actually supports two bound biexciton states. The second, weakly bound state may dramatically enhance exciton–exciton interactions. We also fit our results to a hard-disk model and indicate directions for future work.  相似文献   

20.
Electron cyclotron resonance (CR) has been studied in magnetic fields up to 32 T in two heavily modulation-δ-doped GaAs/Al0.3Ga0.7As single quantum well samples. Little effect on electron CR is observed in either sample in the region of resonance with the GaAs LO phonons. However, above the LO-phonon frequency energy ELO at B>27 T, electron CR exhibits a strong avoided-level-crossing splitting for both samples at energies close to ELO+(E2E1), where E2, and E1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large, reaching a minimum of about 40 cm−1 around 30.5 T for both samples. This splitting is due to a three-level resonance between the second LL of the first electron subband and the lowest LL of the second subband plus an LO phonon. The large splitting in the presence of high electron densities is due to the absence of occupation (Pauli-principle) effects in the final states and weak screening for this three-level process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号