首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron-transfer-induced linkage isomerization was investigated in a series of bis-tridentate Ru polypyridyl complexes [Ru(L-X-OH)(Y-tpy)]2+ with ambidentate ligand L-X-OH=bpy-C(R)(OH)-py (bpy=2,2′-bipyridine; py=pyridine; R=H, Me, Ph, or tBu) and spectator ligand Y-tpy (tpy=2,2′:6′,2′′-terpyridine; Y=p-tolyl, p-PhCO2Me, Cl, OEt, N-pyrrolidine). The ligand-bound ambidentate motif switches reversibly between N and O coordination in the RuII and RuIII state, respectively. The potentials of the RuIII/II couple differ by about 0.5 V between the isomers, and this results in a bistable electrochemical response of the molecular switches. The effects of structural modifications in form of substituents on the linking carbon atom of the ambidentate ligand and on the central pyridine moiety of the spectator ligand were investigated by electrochemical and computational methods. Differences in isomerization behavior span six orders of magnitude in rate constants and two orders of magnitude in equilibrium constants. The results can be interpreted in terms of steric and electronic substituent effects and their influence on rotational barriers, ligation geometry, and electron deficiency of the metal center.  相似文献   

2.
The generation of a nonheme oxoiron(IV) intermediate, [(cyclam)FeIV(O)(CH3CN)]2+ ( 2 ; cyclam=1,4,8,11‐tetraazacyclotetradecane), is reported in the reactions of [(cyclam)FeII]2+ with aqueous hydrogen peroxide (H2O2) or a soluble iodosylbenzene (sPhIO) as a rare example of an oxoiron(IV) species that shows a preference for epoxidation over allylic oxidation in the oxidation of cyclohexene. Complex 2 is kinetically and catalytically competent to perform the epoxidation of olefins with high stereo‐ and regioselectivity. More importantly, 2 is likely to be the reactive intermediate involved in the catalytic epoxidation of olefins by [(cyclam)FeII]2+ and H2O2. In spite of the predominance of the oxoiron(IV) cores in biology, the present study is a rare example of high‐yield isolation and spectroscopic characterization of a catalytically relevant oxoiron(IV) intermediate in chemical oxidation reactions.  相似文献   

3.
The syn and anti isomers of [FeIV(O)(TMC)]2+ (TMC=tetramethylcyclam) represent the first isolated pair of synthetic non‐heme oxoiron(IV) complexes with identical ligand topology, differing only in the position of the oxo unit bound to the iron center. Both isomers have previously been characterized. Reported here is that the syn isomer [FeIV(Osyn)(TMC)(NCMe)]2+ ( 2 ) converts into its anti form [FeIV(Oanti)(TMC)(NCMe)]2+ ( 1 ) in MeCN, an isomerization facilitated by water and monitored most readily by 1H NMR and Raman spectroscopy. Indeed, when H218O is introduced to 2 , the nascent 1 becomes 18O‐labeled. These results provide compelling evidence for a mechanism involving direct binding of a water molecule trans to the oxo atom in 2 with subsequent oxo–hydroxo tautomerism for its incorporation as the oxo atom of 1 . The nonplanar nature of the TMC supporting ligand makes this isomerization an irreversible transformation, unlike for their planar heme counterparts.  相似文献   

4.
The intramolecular gas‐phase reactivity of four oxoiron(IV) complexes supported by tetradentate N4 ligands ( L ) has been studied by means of tandem mass spectrometry measurements in which the gas‐phase ions [FeIV(O)( L )(OTf)]+ (OTf=trifluoromethanesulfonate) and [FeIV(O)( L )]2+ were isolated and then allowed to fragment by collision‐induced decay (CID). CID fragmentation of cations derived from oxoiron(IV) complexes of 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane (tmc) and N,N′‐bis(2‐pyridylmethyl)‐1,5‐diazacyclooctane ( L 8Py2) afforded the same predominant products irrespective of whether they were hexacoordinate or pentacoordinate. These products resulted from the loss of water by dehydrogenation of ethylene or propylene linkers on the tetradentate ligand. In contrast, CID fragmentation of ions derived from oxoiron(IV) complexes of linear tetradentate ligands N,N′‐bis(2‐pyridylmethyl)‐1,2‐diaminoethane (bpmen) and N,N′‐bis(2‐pyridylmethyl)‐1,3‐diaminopropane (bpmpn) showed predominant oxidative N‐dealkylation for the hexacoordinate [FeIV(O)( L )(OTf)]+ cations and predominant dehydrogenation of the diaminoethane/propane backbone for the pentacoordinate [FeIV(O)( L )]2+ cations. DFT calculations on [FeIV(O)(bpmen)] ions showed that the experimentally observed preference for oxidative N‐dealkylation versus dehydrogenation of the diaminoethane linker for the hexa‐ and pentacoordinate ions, respectively, is dictated by the proximity of the target C? H bond to the oxoiron(IV) moiety and the reactive spin state. Therefore, there must be a difference in ligand topology between the two ions. More importantly, despite the constraints on the geometries of the TS that prohibit the usual upright σ trajectory and prevent optimal σCH–σ* overlap, all the reactions still proceed preferentially on the quintet (S=2) state surface, which increases the number of exchange interactions in the d block of iron and leads thereby to exchange enhanced reactivity (EER). As such, EER is responsible for the dominance of the S=2 reactions for both hexa‐ and pentacoordinate complexes.  相似文献   

5.
Preparation of Pentahalopyridineosmates(IV) in Nonpolar Solvents The reaction of hexahaloosmates(IV) with pyridine in nonpolar solvents gives pentahalopyridineosmates(IV) in good yield. Using this method [OsI5py]? is prepared for the first time. It could not be obtained by substitution reactions or photolysis of [OsI6]2? in pyridine. The new complex is characterized by electronic and vibrational spectroscopy.  相似文献   

6.
Well-characterized complexes of transplutonium elements are scarce because of the experimental challenges of working with these elements and the rarity of the isotopes. This leads to a lack of structural and spectroscopic data needed to understand the nature of chemical bonds in these compounds. In this work, the synthesis of Cf(DOPOq)2(NO3)(py) (DOPOq=2,4,6,8-tetra-tert-butyl-1-oxo-1H-phenoxazin-9-olate; py=pyridine) is reported, in which the nitrate anion is hypothesized to form through the α-radiolysis-induced reaction of pyridine and/or the ligand. Computational analysis of the electronic structure of the complex reveals that the CfIII–ligand interactions are largely ionic.  相似文献   

7.
The hybrid bidentate 1-(2-pyridyl)benzotriazole (pyb) ligand was introduced into 3d transition metal catalysis. Specifically, [CuII(OTf)2(pyb)2] ⋅ 2 CH3CN ( 1 ) enables the synthesis of a wide range of propargylamines by the A3 coupling reaction at room temperature in the absence of additives. Experimental and high-level theoretical calculations suggest that the bridging N atom of the ligand imposes exclusive trans coordination at Cu and allows ligand rotation, while the N atom of the pyridine group modulates charge distribution and flux, and thus orchestrates structural and electronic precatalyst control permitting alkyne binding with simultaneous activation of the C−H bond via a transient CuI species.  相似文献   

8.
Formation of the O?O bond is considered the critical step in oxidative water cleavage to produce dioxygen. High‐valent metal complexes with terminal oxo (oxido) ligands are commonly regarded as instrumental for oxygen evolution, but direct experimental evidence is lacking. Herein, we describe the formation of the O?O bond in solution, from non‐heme, N5‐coordinate oxoiron(IV) species. Oxygen evolution from oxoiron(IV) is instantaneous once meta‐chloroperbenzoic acid is administered in excess. Oxygen‐isotope labeling reveals two sources of dioxygen, pointing to mechanistic branching between HAT (hydrogen atom transfer)‐initiated free‐radical pathways of the peroxides, which are typical of catalase‐like reactivity, and iron‐borne O?O coupling, which is unprecedented for non‐heme/peroxide systems. Interpretation in terms of [FeIV(O)] and [FeV(O)] being the resting and active principles of the O?O coupling, respectively, concurs with fundamental mechanistic ideas of (electro‐) chemical O?O coupling in water oxidation catalysis (WOC), indicating that central mechanistic motifs of WOC can be mimicked in a catalase/peroxidase setting.  相似文献   

9.
The synthesis, structure, electrochemistry, and photophysical properties of a series of heteroleptic tris‐ cyclometalated PtIV complexes are reported. The complexes mer‐[Pt(C^N)2(C′^N′)]OTf, with C^N=C‐deprotonated 2‐(2,4‐difluorophenyl)pyridine (dfppy) or 2‐phenylpyridine (ppy), and C′^N′=C‐deprotonated 2‐(2‐thienyl)pyridine (thpy) or 1‐phenylisoquinoline (piq), were obtained by reacting bis‐ cyclometalated precursors [Pt(C^N)2Cl2] with AgOTf (2 equiv) and an excess of the N′^C′H pro‐ligand. The complex mer‐[Pt(dfppy)2(ppy)]OTf was obtained analogously and photoisomerized to its fac counterpart. The new complexes display long‐lived luminescence at room temperature in the blue to orange color range. The emitting states involve electronic transitions almost exclusively localized on the ligand with the lowest π–π* energy gap and have very little metal character. DFT and time‐dependent DFT (TD‐DFT) calculations on mer‐[Pt(ppy)2(C′^N′)]+ (C′^N′=thpy, piq) and mer/fac‐[Pt(ppy)3]+ support this assignment and provide a basis for the understanding of the luminescence of tris‐cyclometalated PtIV complexes. Excited states of LMCT character may become thermally accessible from the emitting state in the mer isomers containing dfppy or ppy as chromophoric ligands, leading to strong nonradiative deactivation. This effect does not operate in the fac isomers or the mer complexes containing thpy or piq, for which nonradiative deactivation originates mainly from vibrational coupling to the ground state.  相似文献   

10.
An easily isolable silacycloheptatriene (silepin) 1 b was synthesized from the reaction of a N-heterocyclic imino (IPrN) substituted tribromosilane IPrNSiBr3 with the sterically congested bis(trimethylsilyl)triisopropylsilyl silanide KSi(TMS)2Si(iPr)3 (BTTPS). In solution, the Si(IV) silepin 1 b is in a thermodynamic equilibrium with the acyclic Si(II) silylene 1 a . The relative concentration of the Si(II) or Si(IV) isomers can be controlled by temperature variation and observed by variable temperature NMR and UV/Vis spectroscopy. DFT calculations show a small reaction barrier for the Si(II)⇌Si(IV) interconversion and a small energy gap between the Si(II) and Si(IV) species. The reactivity of 1 a/b is demonstrated on a variety of small molecules.  相似文献   

11.
The kinetics of the reactions of oxoiron(IV) (FeO2+) with phenol, nitrobenzene, m‐, o‐, and p‐nitrophenol in 1 M HClO4 was investigated by the stopped‐flow technique. The rate constants of these reactions decrease with increasing the one‐electron reduction potentials of the corresponding radical cations of the substrates and with the Hammett parameter of the NO2 group in the phenol ring. A reaction mechanism is proposed, which accounts for the observed trends and for the nature of the reaction products. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 488–494, 2002  相似文献   

12.
The reaction of [Ir2Rh2(CO)12] with 1 mol-equiv. of PPh3 yields [Ir2Rh2(CO)11PPh3] ( 1 ) as a mixture of two isomers with the phosphine ligand axially bound either to one basal Rh-atom in the kinetically preferred isomer 1 R or to one basal Ir-atom in the thermodynamically preferred isomer 11 . Both isomers are fluxional on the 13C-NMR time scale at low temperature due to CO scrambling. Around room temperature, a new type of fluxional process starts to operate which is responsible for the isomerisation 1R?11 , i.e. the intramolecular migration of the reputedly inert PPh3 ligand from one metal centre to another. The activation volumes of conversions 1R → 11 and 11 → 1R are both positive, indicating that the migration of PPh3 is dissociative in character. This article reports the first application of variable pressure 31P-NMR to mechanistic studies.  相似文献   

13.
Tripodal Bis(2,6‐iminophosphoranyl)pyridine Ligands: Iron and Cobalt Complexes with a Potential in Ethene Polymerisation By Staudinger Reaction of bis‐2,6‐diphenylphosphanyl‐pyridine with aryl‐, alkyl‐ and silylazides tripodal ligands L = 2,6‐(Ph2P=NR)2C5H3N (R = Ph 1 a , Mes 1 b , Ad  1 c , SiMe3 1 d ) are synthesized. The reaction of ligand 1 b  with equimolar amounts of [CoCl2(THF)2] and [FeCl2(THF)1.5] in THF does not lead to the expected neutral complexes [(k3‐L)MCl2] but to coordination compounds of the composition L2(CoCl2)3 ( 2 a ) und L(FeCl2)2 ( 3 ). By using acetonitrile as solvent or by crystallisation of 2 a from hot acetonitrile the cationic complex [(k3‐L)CoCl(MeCN)]Cl ( 2 b ) is formed as a second product. The molecular structure 2 b has been characterized by an X‐ray single crystal structure analysis (triclinic, P1, Z = 2, a = 1299.8(1), b = 1488.8(2), c = 1674.2(2) pm, α = 82.911(13)°, β = 76.715(12)°, γ = 72.758(11)°). A preliminary test with 3 shows, that coordination compounds of the ligand system introduced here have potential as catalysts in methyl alumoxane mediated ethene polymerisation.  相似文献   

14.
Oxidative addition of 2‐phenylethylbromide (PhCH2CH2Br) to dimethylplatinum(II) complexes [PtMe2(NN)] ( 1a , NN = 2,2′‐bipyridine (bpy); 1b , NN = 1,10‐phenanthroline (phen)) afforded the new organoplatinum(IV) complexes [PtMe2(Br)(PhCH2CH2)(bpy)], as a mixture of trans ( 2a ) and cis ( 3a ) isomers, and [PtMe2(Br)(PhCH2CH2)(phen)], as a mixture of trans ( 2b ) and cis ( 3b ) isomers, respectively. The new Pt(IV) complexes were readily characterized using multinuclear (1H and 13C) NMR spectroscopy and elemental microanalysis. The crystal structure of 2a was further determined using X‐ray crystallography indicating an octahedral geometry around the platinum centre. A comparison of reactivity of RCH2Br reagents (R = CH3, Ph or PhCH2) in their oxidative addition reactions with complex 1a , with an emphasis on the effects of the R groups of alkyl halides, was also conducted using density functional theory.  相似文献   

15.
The reaction of 2‐acetylpyridine‐N(4)‐cyclohexylthiosemicarbazone [(HAPCT), ( 1 )] ligand with organotin(IV) chloride(s) afforded the five new organotin(IV) complexes: [MeSnCl2(APCT)] ( 2 ), [BuSnCl2(APCT)] ( 3 ), [PhSnCl2(APCT)] ( 4 ), [Me2SnCl(APCT)] ( 5 ), and [Ph2SnCl(APCT)] ( 6 ). The ligand ( 1 ) and its organotin(IV) complexes ( 2–6 ) have been synthesized and characterized by CHN analyses, molar conductivity, UV–vis, FT IR, 1H, 13C, and 119Sn NMR spectral studies. The single crystal X‐ray diffraction studies indicated that [PhSnCl2(APCT)] ( 4 ) is six coordinated and strongly adopts a distorted octahedral configuration with the coordination through pyridine‐N, azomethine‐N, and thiolato‐S atoms of the ligand. The compound crystallizes into a monoclinic lattice with the space group P21/n. The ligand ( 1 ) and its organotin(IV) complexes ( 2–6 ) were assayed for in vitro antibacterial activity against Staphylococcus aureus, Escherichia coli, Enterobacter aerogenes, and Salmonella typhi. The screening results have shown that the organotin(IV) complexes ( 2–6 ) have better antibacterial activity than the free ligand. Furthermore, it has been shown that the diphenyltin(IV) derivative ( 6 ) exhibits significantly better activities than the other organotin(IV) derivatives ( 2–5 ). © 2012 Wiley Periodicals, Inc. Heteroatom Chem 24:43–52, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21061  相似文献   

16.
    
The reaction of ctc-[Ru(R-aapm)2Cl2] (1) with (NH4)2MoS2 in aqueous MeOH afforded redviolet mixed ligand complexes of the type [(R-aapm)2Ru(μ-S)2Mo(OH)2] (2a-2e) [R-aapm = 2-(arylazo) pyrimidine,p-R-C6H4-N=N-C4H3NN, R = H (2a), Me (2b), Cl (2c), OMe (2d), NO2 (2e)]. In complexes (2a-2e) the terminal Mo=S bonds of the MoS unit get hydroxylated and the molybdenum ion is reduced from the starting MoVI in MoS to MoIV in the final product. The solution electronic spectra ex-hibit a strong MLCT band at 550–570 nm in DCM. The1H NMR spectra confirms the geometry of the complexes as being that ofcistranscis isomers. Cyclic voltammograms show a Ru(III)/Ru(II) couple at 1.10–1-4 V, irreversible Mo(IV)/Mo(V) oxidations in the 1.66–1.72 V range, along with four successive reversible ligand reductions in the range -0.45–0.67 V (one electron), -0.82–1.12 V (one electron),-1.44–1.90 V (simultaneously two electrons).  相似文献   

17.
Summary [Ru(TPT)2]2+ undergoes nucleophilic attack at the ligand in aqueous solutions of HO. The reaction is reversible and the equilibrium can be followed spectrophotometrically. In acid solution, the free nitrogen atoms of the uncoordinated pyridine residues are protonated to form a new species. Two reactions of [Fe(TPT)2]2+ take place in H2O over extended periods. The first is the well-known dissociative process, but the second appears to involve reaction at the ligand. The results are used to reinterpret some of the chemistry of complexes of TPT and related ligands.Part XIX: J. A. Arce Sagüés, R. D. Gillard, R. J. Lancashire and P. A. Williams,J. Chem. Soc. Dalton Trans., in press.  相似文献   

18.
The monomeric octa-aza bis-α-diimine macrocyclic complex [CoII(C10H20N8)(H2O)](ClO4)2 I, undergoes various reactions on the macrocyclic ligand. Reaction of complex I with triethylamine in double molar proportions, followed by slow aerial oxidation, produces a molecular dimeric complex [CoII(C10H14N8)]2, III, and a novel Co(I) complex [CoI(C10H19N8)], IV. Complex III is a staggered cofacial dimer with a cobalt-cobalt bond length 2.86(1) Å. The macrocyclic ligand of the complex contains an a-diimine function in each five-membered chelate ring, and a three-atom N-C-N? delocalized system in each six-membered chelate ring. Complex IV has the 5-5-6-6 chelate arrangement because one α-diimine moiety is rearranged to a syn-anti configuration. In the structure, the two fused six-membered chelate rings are fully conjugated and the two fused five-membered rings are saturated. However, when complex I reacts with excess triethylamine under the similar conditions, a dimeric complex of another type, [CoII(C10Hl6N8)]2, II, was generated, in which one N-N bond of the macrocyclic ligand is broken. Complex IV can be isolated also from the reaction of complex I with excess hydrazine, followed by slow aerial oxidation. When hydrazine in double molar proportions was used, complex [CoI(C10H17N8)(NHNH)] V, which contains a coordinated diazene ligand, was obtained. Only one six-membered chelate ring of complex V is deprotonated and oxidized to form a three-atom N-C-N? delocalized system. The structures of octa-aza complexes I-V are determined by X-ray crystallography: I, orthorhombic, C mca, a = 11.646(4), b = 17.049(3), c = 10.706(3) Å, Z = 4, R = 0.045, Rw = 0.047, based on 1024 reflections with I > 2σ(I); II, monoclinic, P 21/c, a = 9.814(3), b = 22.583(6). c = 14.632(9) Å, β = 98.90(5)°, Z = 4, R = 0.085, Rw = 0.101, based on 2033 reflections with I > 2σ(I); III, tetragonal, P 4/nmm, a = 15.614(3), c = 6.498(2) Å, Z = 4, R = 0.081, Rw = 0.115, based on 340 reflections with I > 2σ(I); IV, orthorhombic, P bca, a = 8.484(1), b = 16.662(3), c = 18.760(2) Å, Z = 8, R = 0.029, Rw = 0.024, based on 1441 reflections with I > 2σ(I); V, monoclinic, P 21/m, a = 7.892(3), b = 11.713(6), c = 9.326(4) Å, β = 108.03(3), Z = 2, R = 0.047, Rw = 0.056, based on 948 reflections with I > 2σ(I).  相似文献   

19.
New mixed ligand complexes of copper(II) dithiocarbamates of the general formula, [CuCl(R2dtc)L] or [CuCi(R′ dtc)L] (RCH3 or C2H5, R′ = (CH2)5, dtc =-NCSS? and L = Pyridine, 3-picoline or 4-picoline), have been prepared by the reaction of bis(dithiocarbamato)di-μ-chloro-dicopper(II) complexes with pyridine or picolines. The complexes are found to be non-electrolytes in nitrobenzene. Magnetic susceptibilities, i.r. and electronic spectra of the complexes are reported. A psuedo-tetrahedral structure is suggested for these complexes.  相似文献   

20.
A new soluble vic-dioxime ligand namely 1,4-bis(2′-hydroxyethyl)-2,3-bis(hydroxyimino)-5,6-diphenylpiperazine, (LH2) containing optically active centers has been prepared as a mixture of isomers from (CNO)2 and N,N-bis(2-hydroxyethyl)stilbendiamine (1) which has been made by the reduction of the condensation of the product of benzaldehyde and 2-aminoethanol in the presence of aluminum amalgam. N,N-coordinated planar metal complexes of this ligand have been synthesized with NiII, CuII, CoII, PdII and UVIO2. Oxidation of (LH)2Co in the presence of a base, such as pyridine, leads to an octahedral complex (LH)2CopyCl containing pyridine and chloride as axial ligands in addition to vic-dioxime ligands. The structures of the ligand and its complexes are proposed on the basis of elemental analysis, 1H-n.m.r., mass, i.r. and u.v.–vis. spectral data. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号