共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An analysis is carried out to study the steady two-dimensional stagnation-point flow and heat transfer from a warm, laminar liquid flow to a melting stretching/shrinking sheet. The governing partial differential equations are converted into ordinary differential equations by similarity transformation, before being solved numerically using the Runge-Kutta-Fehlberg method. Results for the skin friction coefficient, local Nusselt number, velocity profiles as well as temperature profiles are presented for different values of the governing parameters. Effects of the melting parameter, stretching/shrinking parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique. 相似文献
3.
Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform heat flux 下载免费PDF全文
Krishnendu Bhattacharyya 《中国物理 B》2013,(7):328-333
In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations, and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting. 相似文献
4.
A numerical study of the boundary layer flow past unsteady stretching surface in nanofluid under the effects of suction and viscous dissipation is investigated. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented, which depends on the unsteadiness parameter A, Eckert number Ec, ζ suction or injection parameter, Prandtl number Pr, Lewis number Le, Brownian motion number Nb, and thermophoresis number Nt. The governing partial differential equations were converted to nonlinear ordinary differential equations by using a suitable similarity transformation, which are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration scheme. The accuracy of the numerical method is tested by performing various comparisons with the previously published work, and the results are found to be in excellent agreement. Numerical results are presented both in tabular and graphical forms illustrating the effects of these parameters on thermal and nanoparticle volume fraction boundary layers. The thermal boundary layer thickens with a rise in the local temperature as the Brownianmotion, thermophoresis, and convective heating each intensify. 相似文献
5.
The unsteady MHD stagnation-point flow and heat transfer over a shrinking sheet was carried out. This study also was conducted in the existence of suction and viscous dissipation. In order to convert the governing partial differential equations to an ordinary differential equation, an appropriate similarity transformation was applied in this study. Then, the resulting equations are worked out by Bvp4c solver in Matlab. The impacts of the parameters involved in this study towards skin friction, Nusselt number, velocity and temperature profile are showed graphically and thoroughly discussed. Remarkably, there were dual solutions present in this study which made us continue deeper in performing the stability analysis. As expected, our study proves that the solution is stable only in the first one while not in the second solution. 相似文献
6.
Rizwan Ul Haq Sohail Nadeem Zafar Hayyat Khan Toyin Gideon Okedayo 《Central European Journal of Physics》2014,12(12):862-871
Current study examines the magnetohydrodynamic (MHD) boundary layer flow of a Casson nanofluid over an exponentially permeable shrinking sheet with convective boundary condition. Moreover, we have considered the suction/injection effects on the wall. By applying the appropriate transformations, system of non-linear partial differential equation along with the boundary conditions are transformed to couple non-linear ordinary differential equations. The resulting systems of non-linear ordinary differential equations are solved numerically using Runge-Kutta method. Numerical results for velocity, temperature and nanoparticle volume concentration are presented through graphs for various values of dimensionless parameters. Effects of parameters for heat transfer at wall and nanoparticle volume concentration are also presented through graphs and tables. At the end, fluid flow behavior is examined through stream lines. Concluding remarks are provided for the whole analysis. 相似文献
7.
We examine the entropy analysis in three-dimensional hydromagnetic flow and convective heat transport of a biviscosity nanofluid over a rotating porous disk with a time-dependent stretching rate in the direction of the radius of the circular disk. We also examine the influence of thermal radiation and viscous dissipation due to nanoparticles and applied magnetic field. We invoked suitable self-similar transformations to covert the modeled coupled nonlinear PDEs into a set of nonlinear ODEs. The transformed system of equations is then worked out numerically by a well-known shooting technique and the fourth-order Runge–Kutta–Fehlberge method. The rotating phenomenon yields an additional parameter known as a rotation parameter, which controls the disk’s rotation. The study shows that the fluid motion is accelerated along the radial and cross-radial directions with an increase in the rotation of the disk. The skin-friction and the heat transfer rate at the disk strongly depend on the rotation of the disk, permeability of the porous medium, thermal radiation, and nanoparticle size. The Bejan number quantifies the entropy production of the system. It has a considerable impact on the magnetic field, rotation of the disk, thermal radiation, and Biot number. The efficient performance of the system is possible by a suitable choice of the physical parameters discussed in this article. 相似文献
8.
This article explores the boundary layer flow and heat transfer of a viscous nanofluid bounded by a hyperbolically stretching sheet. Effects of Brownian and thermophoretic diffusions on heat transfer and concentration of nanoparticles are given due attention. The resulting nonlinear problems are computed for analytic and numerical solutions. The effects of Brownian motion and thermophoretic property are found to increase the temperature of the medium and reduce the heat transfer rate. The thermophoretic property thus enriches the concentration while the Brownian motion reduces the concentration of the nanoparticles in the fluid. Opposite effects of these properties are observed on the Sherwood number. 相似文献
9.
10.
A steady flow and heat transfer of a hybrid nanofluid past a permeable moving surface is investigated. In this study, 0.1 solid volume fraction of alumina (Al2O3) is fixed, then consequently, various solid volume fractions of copper (Cu) are added into the mixture with water as the base fluid to form Cu-Al2O3/water hybrid nanofluid. The similarity equations are obtained by converting the governing equations of the hybrid nanofluid using the technique of similarity transformation. The bvp4c function available in Matlab software is used to solve the similarity equations numerically. The numerical results are obtained for selected parameters and discussed in detail. It is found that hybrid nanofluid enhances the heat transfer rate compared to the regular nanofluid. The results show that two solutions exist up to a certain value of the moving parameter and suction strengths. The critical value in which the solution is in existence decreases as nanoparticle volume fractions increase. The temporal stability analysis is conducted in determining the stability of the dual solutions, and it is revealed that only one of them is stable and physically reliable. 相似文献
11.
The current mathematical model explains the influence of non-linear thermal radiation on the Casson liquid flow over a moving thin needle by considering Buongiorno's nanofluid model.The influences of Stefan blowing, Dufour and Soret effects are also considered in the model. The equations which represent the described flow pattern are reduced to ordinary differential equations(ODEs) by using apt similarity transformations and then they are numerically solved with Runge–Kutta-Fehlberg's fourth fifth-order method(RKF-45) with shooting process. The impacts of pertinent parameters on thermal, mass and velocity curves are deliberated graphically.Skin friction, rate of heat and mass transfer are also discussed graphically. Results reveal that, the increase in values of Brownian motion, thermophoresis, Dufour number, heating and radiative parameters improves the heat transfer. The increasing values of the Schmidt number deteriorates the mass transfer but a converse trend is seen for increasing values of the Soret number. Finally,the escalating values of the radiative parameter decays the rate of heat transfer. 相似文献
12.
The paper studies the problem of the unsteady two-dimensional stagnation-point flow of an incompressible viscous fluid over a flat deformable sheet. The flow is started impulsively from rest and the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. An analytical series solution is obtained by means of the homotopy analysis method (HAM). Also, the homotopy-Pade′ technique is employed. An explicit formula for the local friction coefficient is provided. The present formula, different from the perturbation solution, is accurate and uniformly valid for all dimensionless time in the whole spatial region and for all possible values of physical parameter λ, defined as the ratio of the potential flow velocity to the sheet sudden stretching velocity. Numerical tests are done to verify the present formula for its validity and accuracy. 相似文献
13.
14.
Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis 下载免费PDF全文
Astick Banerjee Krishnendu Bhattacharyya Sanat Kumar Mahato and Ali J. Chamkha 《中国物理 B》2022,31(4):44701-044701
The nanofluid and porous medium together are able to fulfill the requirement of high cooling rate in many engineering problems. So, here the impact of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium is examined. Moreover, the thermal radiation and viscous dissipation effects are considered. The problem governing partial differential equations are converted into self-similar coupled ordinary differential equations and those are numerically solved by the shooting method. The computed results can reveal many vital findings of practical importance. Firstly, dual solutions exist for decelerating unsteady flow and for accelerating unsteady and steady flows, the solution is unique. The presence of nanoparticles affects the existence of dual solution in decelerating unsteady flow only when the medium of the flow is a porous medium. But different shapes of nanoparticles are not disturbing the dual solution existence range, though it has a considerable impact on thermal conductivity of the mixture. Different shapes of nanoparticles act differently to enhance the heat transfer characteristics of the base fluid, i.e., the water here. On the other hand, the existence range of dual solutions becomes wider for a larger permeability parameter related to the porous medium. Regarding the cooling rate of the heated surface, it rises with the permeability parameter, shape factor (related to various shapes of Cu-nanoparticles), and radiation parameter. The surface drag force becomes stronger with the permeability parameter. Also, with growing values of nanoparticle volume fraction, the boundary layer thickness (BLT) increases and the thermal BLT becomes thicker with larger values of shape factor. For decelerating unsteady flow, the nanofluid velocity rises with permeability parameter in the case of upper branch solution and an opposite trend for the lower branch is witnessed. The thermal BLT is thicker with radiation parameter. Due to the existence of dual solutions, a linear stability analysis is made and it is concluded that the upper branch and unique solutions are stable solutions. 相似文献
15.
Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid 下载免费PDF全文
In this article, the unsteady magnetohydrodynamic (MHD) stagnation point flow and heat transfer of a nanofluid over a stretching/shrinking sheet is investigated numerically. The similarity solution is used to reduce the governing system of partial differential equations to a set of nonlinear ordinary differential equations which are then solved numerically using the fourth-order Runge-Kutta method with shooting technique. The ambient fluid velocity, stretching/shrinking velocity of sheet, and the wall temperature are assumed to vary linearly with the distance from the stagnation point. To investigate the influence of various pertinent parameters, graphical results for the local Nusselt number, the skin friction coefficient, velocity profile, and temperature profile are presented for different values of the governing parameters for three types of nanoparticles, namely copper, alumina, and titania in the water-based fluid. It is found that the dual solution exists for the decelerating flow. Numerical results show that the extent of the dual solution domain increases with the increases of velocity ratio, magnetic parameter, and permeability parameter whereas it remains constant as the value of solid volume fraction of nanoparticles changes. Also, it is found that permeability parameter has a greater effect on the flow and heat transfer of a nanofluid than the magnetic parameter. 相似文献
16.
Roslinda Nazar Mihaela Jaradat Norihan M. Arifin Ioan Pop 《Central European Journal of Physics》2011,9(5):1195-1202
In this paper, the stagnation-point flow and heat transfer towards a shrinking sheet in a nanofluid is considered. The nonlinear
system of coupled partial differential equations was transformed and reduced to a nonlinear system of coupled ordinary differential
equations, which was solved numerically using the shooting method. Numerical results were obtained for the skin friction coefficient,
the local Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters, namely
the nanoparticle volume fraction φ, the shrinking parameter λand the Prandtl number Pr. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It was found that nanoparticles of low thermal conductivity, TiO2, have better enhancement on heat transfer compared to nanoparticles Al2O3 and Cu. For a particular nanoparticle, increasing the volume fraction φ results in an increase of the skin friction coefficient and the heat transfer rate at the surface. It is also found that
solutions do not exist for larger shrinking rates and dual solutions exist when λ < −1.0. 相似文献
17.
The numerical modeling of natural convection fluid flow and heat transfer in a quarter of gearwheel-shaped heat exchanger is carried out. The heat exchanger is included with internal active square bodies. These bodies have hot and cold temperatures with different thermal arrangements. Three different thermal arrangements are considered and showed with Case A, Case B and Case C. The CuO-water nanofluid is selected as operating fluid. The Koo-Kleinstreuer-Li (KKL) correlation is utilized to estimate the dynamic viscosity and thermal conductivity. In addition, the shapes of nanoparticles are taken account in the analysis. The Rayleigh number, nanoparticle concentration and thermal arrangements of internal active bodies are the governing parameters. The impacts of these parameters on the fluid flow, heat transfer rate, local and total entropy generation and heatlines are studied, comprehensively. The results show that the heat transfer rate enhances with increasing of Rayleigh number and nanoparticle concentration. Moreover, the thermal arrangement of internal active bodies has considerable effect on the heat transfer between heat sources and heat sinks. On the other hand, the total entropy generation enhances and decreases with increasing of Rayleigh number and nanoparticle concentration, respectively. 相似文献
18.
19.
Hydrothermal behavior of nanofluid fluid between two parallel plates is studied. One of the plates is externally heated, and the other plate, through which coolant fluid is injected, expands or contracts with time. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL correlation. The effects of the nanoparticle volume fraction, Reynolds number, Expansion ratio and power law index on Hydrothermal behavior are investigated. Results show that heat transfer enhancement has direct relationship with Reynolds number when power law index is equals to zero but opposite trend is observed for other values of power law index. 相似文献
20.
In this letter, water base nanofluid flow over wavy surface in a porous medium of spherical packing beds is investigated. The copper oxides particles are taken into account. These properties are rehabilitated when fluid interacts with porous walls. For porous medium, Dupuit–Forchheimer model; an extension of Darcy's law model is utilized. The natures of velocity and temperature profiles of nanofluid are discussed graphically whereas the values of convection heat transfer coefficient in the presence of different nanoparticles concentrations in porous medium is presented in tabular form. The obtained results illustrate that convection heat transfer is improved by nanoparticles concentration but reduces when fluid attract to pores structured medium. On the other hand, when particles are added in fluid, convection heat transfer rate is improved but flow velocity is declined. 相似文献