首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compared fat percentage in the HISTO method and chemical-shift imaging method, a 3-echo 3D gradient echo sequence with a T2*-corrected Dixon (3-point Dixon) and 6-echo interference Dixon magnetic resonance (MR) imaging (6-point Dixon) method, to evaluate clinical significance of fatty liver quantification by multi-echo T2*-corrected single-voxel spectroscopy Histo (HISTO). A total of 21 liver donors underwent MR imaging examination. The 3-T MR system (Siemens Healthcare Tim Verio, Erlangen, Germany) was used for all studies. For fat percentage evaluations, a 3-echo 3D gradient echo sequence with T2*-corrected Dixon (3-point Dixon) and 6-Echo Interference Dixon (6-point Dixon) pulse sequences, including HISTO, were applied in sequence. Using fat percentages obtained from each pulse sequence, levels of fatty liver were classified as: non-fatty liver, <5 %; mild fatty liver, >5 but <31 %; and severe fatty liver, >31 %. The correlation between methods was calculated with a correlation coefficient (R 2): HISTO and 3-point Dixon, 0.936 (p < 0.001); HISTO and 6-point Dixon, 0.944 (p < 0.001); and 3-point Dixon and 6-point Dixon, 0.984 (p < 0.001). The HISTO, which was used to investigate fat percentages after T2* correction, showed a high correlation with 3-point Dixon and 6-point Dixon, suggesting that the multi-echo method is useful for accurately determining fat percentages.  相似文献   

2.
PurposeThis study investigated whether T1 values in native T1 mapping of 3T magnetic resonance imaging (MRI) of the liver were affected by the fatty component.MethodsThis prospective study involved 340 participants from a population-based cohort study between May 8, 2018 and August 8, 2019. Data obtained included: (1) hepatic stiffness according to magnetic resonance elastography (MRE); (2) T1 value according to T1 mapping; (3) fat fraction and iron concentration from multi-echo Dixon; and (4) clinical indices of hepatic steatosis including body mass index, waist circumference, history of diabetes, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase, and triglycerides. The correlations between T1 value and fat fraction, and between T1 value and liver stiffness were assessed using Pearson's correlation coefficient. The independent two-sample t-test was used to evaluate the differences in T1 values according to the presence or absence of hepatic steatosis, and the one-way analysis of variance was used to evaluate the difference in T1 value by grading of hepatic steatosis according to MRI-based proton density fat fraction (PDFF). In addition, univariate and multivariate linear regression analyses were performed to determine whether other variables influenced the T1 value.ResultsT1 value showed a positive correlation with the fat fraction obtained from PDFF (r = 0.615, P < 0.001) and with the liver stiffness obtained from MRE (r = 0.370, P < 0.001). Regardless of the evaluation method, the T1 value was significantly increased in subjects with hepatic steatosis (P < 0.001). When comparing hepatic steatosis grades based on MRI-PDFF, the mean T1 values were significantly different in all grades, and the T1 value tended to increase as the grade increased (P < 0.001, P for trend <0.001). On multiple linear regression analysis, the T1 value was influenced by MRI-PDFF, calculated liver iron concentration, liver stiffness, and serum aspartate aminotransferase level.ConclusionThe T1 value obtained by current T1 mapping of 3T MRI was affected by the liver fat component and several other factors such as liver stiffness, iron concentration, and inflammation.  相似文献   

3.
IntroductionAbnormal accumulation of adipose tissue (AT) alters the metabolic profile and underlies cardiovascular complications. Conventional measures provide global measurements for the entire body. The purpose of this study was to propose a new approach to quantify the amount and type of truncal AT automatically from MRI in metabolic patients and controls.Materials and methodsDIXON acquisitions were performed at 1.5 T in 30 metabolic syndrome (MS) (59 ± 6 years), 12 obese (50 ± 11 years), 35 type 2 diabetes (T2DM) patients (56 ± 11 years) and 19 controls (52 ± 11 years). AT was segmented into: subcutaneous AT “SAT”, visceral AT “VAT”, deep VAT “dVAT”, peri-organ VAT “pVAT” using active contours and k-means clustering algorithms. Subsequently, organ AT infiltration index “oVAT” was calculated as the normalized fat signal magnitude in organs.ResultsExcellent intra- and inter-operator reproducibility was obtained for AT segmentation. MS and obese patients had the highest amount of total AT. SAT increased in MS (1144 ± 621 g) and T2DM patients (1024 ± 634 g), and twice the level of SAT in controls (505 ± 238 g), and further increased in obese patients (1429 ± 621 g). While VAT, pVAT and dVAT increased to a similar degree in the metabolic patients compared to controls, the oVAT index was able to differentiate controls from MS and T2DM patients and to discriminate the three metabolic patient groups (p < 0.01). Local AT sub-types were not related to BMI in all groups except for SAT in controls (p = 0.03).ConclusionReproducible truncal AT sub-types quantification using 3D MRI was able to characterize patients with metabolic diseases. It may serve in the future as a non-invasive predictor of cardiovascular complications in such patients.  相似文献   

4.
To prospectively assess intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL) using single voxel spectroscopy (SVS) and multi voxel magnetic resonance spectroscopy (MVS) in soleus muscle and correlate results with metabolic variables in non-obese (BMI < 23 kg/m2) Asian Indian males. Thirty one patients with diabetes (cases) and twelve normoglycaemic subjects (controls) underwent point resolved spectroscopy sequence (PRESS) of soleus muscle using SVS and MVS in a 3 T MRI scanner. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were measured from MRI images and body composition was measured from dual-energy x-ray absorptiometry (DXA). The mean IMCL from SVS and MVS were 1.6% and 2.6% in cases and 2.3% and 3.4% in controls respectively. The mean EMCL from SVS and MVS were 1.8% and 3% in cases and 1.5% and 3% respectively in controls. A significant correlation between IMCL and total fat mass (rho = 0.42, p < 0.01) and total body fat (rho = 0.46; p < 0.01) were observed in cases while using the SVS technique and no correlations were found in the MVS technique. The SVS showed significant correlations between total myocellular lipids with VAT and SAT in cases alone. Total myocellular lipids acquired using both techniques showed a significant correlation with BMI, waist circumference, total fat mass, total body fat and truncal fat in cases alone. Quantification of IMCL of soleus muscle using the SVS technique is useful in studying the relationship with metabolic markers in non-obese Asian Indians with diabetes.  相似文献   

5.
PurposeIntramuscular fat infiltration is a dynamic process, in response to exercise and muscle health, which can be quantified by estimating fat fraction (FF) from Dixon MRI. Healthy hip abductor muscles are a good indicator of a healthy hip and an active lifestyle as they have a fundamental role in walking. The automated measurement of the abductors' FF requires the challenging task of segmenting them. We aimed to design, develop and evaluate a multi-atlas based method for automated measurement of fat fraction in the main hip abductor muscles: gluteus maximus (GMAX), gluteus medius (GMED), gluteus minimus (GMIN) and tensor fasciae latae (TFL).MethodWe collected and manually segmented Dixon MR images of 10 healthy individuals and 7 patients who underwent MRI for hip problems. Twelve of them were selected to build an atlas library used to implement the automated multi-atlas segmentation method. We compared the FF in the hip abductor muscles for the automated and manual segmentations for both healthy and patients groups. Measures of average and spread were reported for FF for both methods. We used the root mean square error (RMSE) to quantify the method accuracy. A linear regression model was used to explain the relationship between FF for automated and manual segmentations.ResultsThe automated median (IQR) FF was 20.0(16.0–26.4) %, 14.3(10.9–16.5) %, 15.5(13.9–18.6) % and 16.2(13.5–25.6) % for GMAX, GMED, GMIN and TFL respectively, with a FF RMSE of 1.6%, 0.8%, 2.1%, 2.7%. A strong linear correlation (R2 = 0.93, p < .001, m = 0.99) was found between the FF from automated and manual segmentations. The mean FF was higher in patients than in healthy subjects.ConclusionThe automated measurement of FF of hip abductor muscles from Dixon MRI had good agreement with FF measurements from manually segmented images. The method was accurate for both healthy and patients groups.  相似文献   

6.
BackgroundAssessment of muscle atrophy and fatty degeneration in brachial plexus injury (BPI) could yield valuable insight into pathophysiology and could be used to predict clinical outcome. The objective of this study was to quantify and relate fat percentage and cross-sectional area (CSA) of the biceps to range of motion and muscle force of traumatic brachial plexus injury (BPI) patients.MethodsT1-weighted TSE sequence and three-point Dixon images of the affected and non-affected biceps brachii were acquired on a 3 Tesla magnetic resonance scanner to determine the fat percentage, total and contractile CSA of 20 adult BPI patients. Regions of interest were drawn by two independent investigators to determine the inter-observer reliability. Paired Students' t-test and multivariate analysis were used to relate fat percentage, total and contractile CSA to active flexion and biceps muscle force.ResultsThe mean fat percentage 12 ± 5.1% of affected biceps was higher than 6 ± 1.0% of the non-affected biceps (p < 0.001). The mean contractile CSA 8.1 ± 5.1 cm2 of the affected biceps was lower than 19.4 ± 4.9 cm2 of the non-affected biceps (p < 0.001). The inter-observer reliability was excellent (ICC 0.82 to 0.96). The contractile CSA contributed most to the reduction in active flexion and muscle force.ConclusionQuantitative measurement of fat percentage, total and contractile CSA using three-point Dixon sequences provides an excellent reliability and relates with active flexion and muscle force in BPI.  相似文献   

7.
BackgroundChronic liver diseases pose a major health problem worldwide, while common tests for diagnosis and monitoring of diffuse hepatopathy have considerable limitations. Preliminary data on the quantification of hepatic extracellular volume fraction (ECV) with magnetic resonance imaging (MRI) for non-invasive assessment of liver fibrosis are encouraging, with ECV having the potential to overcome several of these constraints.PurposeTo clinically evaluate ECV provided by quantitative MRI for assessing the severity of liver disease.Materials and methodsIn this prospective study, multiparametric liver MRI, including T1 mapping and magnetic resonance elastography (MRE), was performed in subjects with and without hepatopathy between November 2018 and October 2019. T1, T2, T2*, proton density fat fraction and stiffness were extracted from parametric maps by regions of interest and ECV was calculated from T1 relaxometries. Serum markers of liver disease were obtained by clinical database research. For correlation analysis, Spearman rank correlation was used. ROC analysis of serum markers and quantitative MRI data for discrimination of liver cirrhosis was performed with MRE as reference standard.Results109 participants were enrolled (50.7 ± 16.1 years, 61 men). ECV, T1 and MRE correlated significantly with almost all serum markers of liver disease, with ECV showing the strongest associations (up to r = 0.67 with MELD, p < 0.01). ECV and T1 correlated with MRE (0.75 and 0.73, p < 0.01 each). ECV (AUC 0.89, cutoff 32.2%, sensitivity 85%, specificity 87%) and T1 mapping (AUC 0.85, cutoff 592.5 ms, sensitivity 83%, specificity 75%) featured good performances in detection of liver cirrhosis with only ECV performing significantly superior to model of end stage liver disease (MELD), AST/ALT ratio and international normalized ratio (p < 0.01, respectively).ConclusionQuantification of hepatic extracellular volume fraction with MRI is suitable for estimating the severity of liver disease when using MRE as the standard of reference. It represents a promising tool for non-invasive assessment of liver fibrosis and cirrhosis.  相似文献   

8.
ObjectiveTo evaluate non-inferiority and diagnostic performance of an American College of Radiology compliant abbreviated MRI protocol (AB-MRI) compared with standard-of-care breast MRI (SOC-BMRI) in patients with increased breast cancer risk.Material and methodsWomen with increased lifetime breast cancer risk by American Cancer Society guidelines underwent breast MRI at a single institution between October 2015 and February 2018. AB-MRI was acquired at 3.0 T with T2-weighted extended fast spin echo triple-echo Dixon and pre- and post-contrast 3D dual-echo fast spoiled gradient echo two-point Dixon sequences with an 8-channel breast coil 1–7 days after SOC-BMRI. Three readers independently reviewed AB-MRI and assigned BI-RADS categories for maximum intensity projection images (AB1), dynamic contrast-enhanced (DCE) images (AB2), and DCE and non-contrast T2 and fat-only images (AB3). These scores were compared to those from SOC-BMRI.ResultsCancer yield was 14 per 1000 (women-years) in 73 women aged 26–75 years (mean 53.5 years). AB-MRI acquisition times (mean 9.63 min) and table times (mean 15.07 min) were significantly shorter than those of SOC-BMRI (means 19.46 and 36.3 min, respectively) (p < .001). Accuracy, sensitivity, specificity, and positive and negative predictive values were identical for AB3 and SOC-BMRI (93%, 100%, 93%, 16.7%, and 100%, respectively). AB-MRI with AB1 and AB2 had significantly lower specificity (AB1 = 73.6%, AB2 = 77.8%), positive predictive values (AB1 = 5%, AB2 = 5.9%), and accuracy (AB1 = 74%, AB2 = 78%) than those of SOC-BMRI (p = .002 for AB1, p = .01 for AB2).ConclusionAB-MRI was acquired significantly faster than SOC-BMRI and its diagnostic performance was non-inferior. Inclusion of T2 and fat-only images was necessary to achieve non-inferiority by multireader evaluation.  相似文献   

9.
Fat accumulates as droplets in the hepatocyte swelling, distortion of microcirculatory anatomy and compression of sinus. This study aims to investigate the correlation between the T2*-corrected fat fraction (FF) value acquired via gradient echo with a low flip angle and parenchymal pseudorandom blood perfusion (P fraction), microcirculation (D fast), and slow component of diffusion (D slow), acquired via intravoxel incoherent motion (IVIM), and to investigate the blood microcirculation and diffusion components of liver parenchyma, according to fat deposition. A total of 126 patients underwent 3-T magnetic resonance imaging, including a 3-echo three-dimensional (3-D) gradient echo sequence with T2*-corrected Dixon reconstruction and IVIM sequence. Pearson’s correlation analysis was conducted to investigate the correlation of the FF obtained via the Dixon method with the apparent diffusion coefficient (ADC), D slow, P fraction, and D fast obtained via IVIM. Correlation analysis was also conducted for the IVIM mapping images. A confidence level of p < 0.05 was set. A negative correlation was found between the T2*-corrected FF acquired using the 3-echo 3-D Dixon method and D slow acquired via IVIM (r = ?0.181, p < 0.05). It was likely due to the increased extracellular collagen deposition and increased intracellular fat droplets during the progression of liver fibrosis.  相似文献   

10.
ObjectiveThe aim of this study was to measure brown adipose tissue (BAT) activity by targeted peptide (CKGGRAKDC-NH2)-coupled, polyethylene glycol (PEG)-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with magnetic resonance imaging (MRI).MethodsThe peptide was conjugated with PEG-coated USPIO to obtain targeted probes. Male C57BL/6 J mice were randomly divided into cold exposing and control group (n = 5 per group). T2*-weighted images were obtained pre- and post-contrast probes. Histological and gene expression analyses were carried out.ResultsT2* relaxation time of BAT in the cold exposing group decreased more significantly compared to the control group. The calculated R2* increased with the reduction of T2* value. The ΔR2* (26.68 s−1) of BAT in the cold exposing group was significantly higher (P < 0.05) than the control group. Iron particle sediments in BAT of the cold exposing group were revealed more than the control group with Prussian blue staining. The UCP1 expression level was up-regulated after cold activation.ConclusionsBAT activity could be measured in vivo by the targeted peptide-coupled, PEG-coated USPIOs with MRI.  相似文献   

11.
12.
PurposeTo propose the combined modified-Dixon and PROPELLER sequence with low refocusing flip angle (RFA) and investigate whether this sequence can acquire clinical contrast-enhanced (CE), fat-suppressed T1-weighted (T1W) images of the head and neck.MethodsThe optimal RFA for T1W imaging was investigated in the brain of a healthy volunteer. The motion artifacts, water–fat separation error, contrast ratio (CR), and comprehensive quality were evaluated through comparison with a standard Cartesian modified-Dixon sequence in 50 patients. Two radiologists independently scored motion artifacts and water–fat separation error using a 4-point scale (1, unacceptable; 4, excellent) and comprehensive quality using a 5-point scale (1, substantially inferior; 5, substantially superior). The CR between CE lesions and non-CE muscle was calculated.ResultsThe optimal RFA of 40° was determined. In the motion artifact assessment, ratings of 3 or 4 points were assigned to 83% (observer-1, 42/50; observer-2, 41/50) and 99% (50/50; 49/50) of cases for the standard and proposed sequences, respectively (p < 0.001; p < 0.001). For the water–fat separation error assessment, ratings of 3 or 4 points were assigned to 100% (50/50; 50/50) and 97% (48/50; 49/50) of cases, respectively (p < 0.001; p = 0.02). In comprehensive evaluation, the proposed sequence was equal, slightly superior, or substantially superior to the standard sequence in 85% (39/50; 46/50). The CR was significantly higher with the proposed sequence [2.27 (1.99–2.97) vs. 2.08 (1.88–2.42), p < 0.001].ConclusionThe proposed sequence acquired stable fat-suppressed CE T1W images without motion artifacts and yielded superior overall image quality compared with the standard sequence.  相似文献   

13.
A 3 T MR scanner was used to investigate the relationship between the alteration of bile duct lesions and the hepatic metabolic changes in hamsters infected with Opisthorchis viverrini by using 3 T MRI and 1H MR spectroscopy. Animals were divided into control and infected groups. Five normal hamsters were used as control; fifty-five hamsters were infected with O. viverrini to induce bile duct lesions and hepatic metabolic changes. T2-weighted image sequence in three orthogonal planes were conducted by MRI scans. Single-voxel 1H MRS was performed to obtain the relative choline-to-lipid ratios. The livers and bile ducts were excised for the histologic examination. The progression of bile duct changes by histology and metabolic changes in O. viverrini infected hamsters were co-investigated. In the O. viverrini-infected group, the T2-weighted images revealed the time-dependent intra- and extra-hepatic duct dilatations in the liver. The mean (± SD) choline-to-lipid ratios were 0.11 ± 0.035 in the control group, whereas the ratio in the infected group increased significantly with the progression of time. Histologic grading of hepatic inflammation and fibrosis were correlated well with the MRI grading (Spearman rank correlation test; r = 0.746 and p < 0.001). The control group showed no dilatation of the bile ducts and showed normal liver patterns. Noninvasive technique, MRI and 1H MRS can demonstrated and applied to evaluate not only the inflammation-related fibrosis in the small bile ducts but also the metabolic changes in the liver induced by O. viverrini infection. A significant increase in the choline-to-lipids ratios were observed in parallel with the time-course of infection. O. viverrini infected in human is detected by stool examination. Hepatobiliary morbidity is detected and followed up by ultrasonography. MRI and MRS can be used in conjunction with ultrasonography for evaluation of progression of the disease.  相似文献   

14.
PurposeTo explore the application of intravoxel incoherent motion diffusion-weighted imaging(IVIM-DWI) on account of field-of-view optimized and constrained undistorted single shot (FOCUS) and iteraterative decomposition of water and fat with echo asymmetry and least-squares estimation quantitation(IDEAL-IQ) sequences in evaluating the vertebral microenvironment changes of type 2 diabetes mellitus(T2DM) patients and the correlation with bone mineral density(BMD).Method128 T2DM patients (mean age 63.4 ± 5.28 years) underwent both dual-energy X-ray absorptiometry (DEXA) and spine MRI. The FOCUS IVIM-DWI and IDEAL-IQ derived parameters of the vertebral body(L1, L2, L3, L4)were measured on corresponding maps of the lumbar spine. The subjects were divided into 3 groups according to T-scores as follows: normal (n = 37), osteopenia (n = 43), and osteoporosis(n = 48) group.One-way analysis of variance (ANOVA) were used to compare the vertebral parameters(ADCslow, ADCfast, f, FF, R2*) among three BMD cohorts.Receiver operating characteristic (ROC) analyses and Spearman's rank correlation were performed to test the diagnostic performance and the correlation between them respectively.ResultsThere were significant differences in vertebral ADCslow, ADCfast, FF and R2* between the three groups (P < 0.05).Statistically, BMD was moderately negatively correlated with FF (r = −0.584, P < 0.001) and weakly positively with ADCslow (r = 0.334, P < 0.001), meanwhile moderately positively correlated with R2*(r = 0.509, P < 0.001) and ADCfast(0.545, P < 0.001).ADCfast was moderately negatively correlated with FF (r = −0.417, P < 0.001), weakly positively correlated with R2*(0.359, P < 0.001).Compared with the area under the curve (AUC) of ADCslow, ADCfast, FF and R2*, the AUC of ADCfast was higher in identifying between normal and abnormal(osteopenia and osteoporosis), normal from osteopenia, while the AUC of FF was higher in identifying osteopenia from osteoporosis.ConclusionsFOCUS IVIM-DWI and IDEAL-IQ of lumbar spine might be useful to evaluate the vertebral microenvironment changes of T2DM patients.  相似文献   

15.
16.
BackgroundT2-weighted, two-point Dixon fast-spin-echo (FSE) is an effective technique for magnetic resonance neurography (MRN) that can provide quantitative assessment of muscle denervation. Low signal-to-noise ratio and inadequate fat suppression, however, can impede accurate interpretation.PurposeTo quantify effects of principal component analysis (PCA) denoising on tissue signal intensities and fat fraction (FF) and to determine qualitative image quality improvements from both denoising and water-weighting (WW) algorithms to improve nerve conspicuity and fat suppression.Study typeProspective.SubjectsTwenty-one subjects undergoing MR neurography evaluation (11/10 male/female, mean age = 46.3±13.7 years) with 60 image volumes. Twelve subjects (23 image volumes) were determined to have muscle denervation based on diffusely elevated T2 signal intensity.Field strength/sequence3 T, 2D, two-point Dixon FSE.AssessmentQualitative assessment included overall image quality, nerve conspicuity, fat suppression, pulsation and ringing artifacts by 3 radiologists separately on a three-point scale (1 = poor, 2 = average, 3 = excellent). Quantitative measurements for FF and signal intensity relative to normal muscle were made for nerve, abnormal muscle and subcutaneous fat.Statistical testsLinear and ordinal regression models were used for quantitative and qualitative comparisons, respectively; 95% confidence intervals (CIs) and p-values for pairwise comparisons were adjusted using the Holm-Bonferroni method. Inter-rater agreement was assessed using Gwet's agreement coefficient (AC2).ResultsSimulations showed PCA-denoising reduced FF error from 2.0% to 1.0%, and from 7.6% to 3.1% at noise levels of 10% and 30%, respectively. In human subjects, PCA-denoising did not change signal levels and FF quantitatively. WW decreased fat signal significantly (−83.6%, p < 0.001). Nerve conspicuity was improved by WW (odds ratio, OR = 5.8, p < 0.001). Fat suppression was improved by both PCA (OR = 3.6, p < 0.001) and WW (OR = 2.2, p < 0.001). Overall image quality was improved by PCA + WW (OR = 1.7, p = 0.04).ConclusionsWW and PCA-denoising improved nerve conspicuity and fat suppression in MR neurography. Denoising can potentially provide improved accuracy of FF maps for assessing fat-infiltrated muscle.  相似文献   

17.
ObjectiveTo investigate the clinical feasibility of single-breath-hold (SBH) T2-weighted (T2WI) liver MRI with deep learning-based reconstruction in the evaluation of image quality and lesion delineation, compared with conventional multi-breath-hold (MBH) T2WI.MethodsOne hundred and fifty-two adult patients with suspected liver disease were prospectively enrolled. Two independent readers reviewed images acquired with conventional MBH-T2WI and SBH-T2WI at 3.0 T MR scanner. For image quality analyses, motion artifacts scores and boundary sharpness scores were compared using nonparametric Wilcoxon matched pairs tests between MBH-T2WI and SBH-T2WI. With the reference standard, 89 patients with 376 index lesions were included for lesion analyses. The lesion detection rates were compared by chi-square test, the lesion conspicuity scores and lesion-liver contrast ratio (CR) were compared using nonparametric Wilcoxon matched pairs tests between the two sequences.ResultsFor both readers, motion artifacts scores of SBH-T2WI were significantly lower than MBH-T2WI (P < 0.001). Boundary sharpness scores of SBH-T2WI were significantly higher than MBH-T2WI (P < 0.001). The lesion detection rates for SBH-T2WI were significantly higher than MBH-T2WI (P < 0.001); the differences of lesion detection rates between the two sequences were statistically significant for small (≤ 10 mm) liver lesions (P < 0.001), while not significant for larger (> 10 mm) lesions (P > 0.05). Lesion conspicuity scores were significantly higher on SBH-T2WI than MBH-T2WI in the entire cohort as well as in both stratified subgroups of lesions ≤10 mm and > 10 mm (P < 0.001 for all). CRs for focal liver lesions were also significantly higher with SBH-T2WI (P < 0.001).ConclusionThe SBH-T2WI sequence with deep-learning based reconstruction showed promising performance as it provided significantly better image quality, lesion detectability, lesion conspicuity and contrast within a single breath-hold, compared with the conventional MBH-T2WI.  相似文献   

18.
PurposeWe aimed to investigate whether quantitative diffusivity variables of healthy ovaries vary during the menstrual cycle and to evaluate alterations in women using oral contraceptives (OC).MethodsThis prospective study (S-339/2016) included 30 healthy female volunteers, with (n = 15) and without (n = 15) intake of OC between 07/2017 and 09/2019. Participants underwent 3T diffusion-weighted MRI (b-values 0–2000 s/mm2) three times during a menstrual cycle (T1 = day 1–5; T2 = day 7–12; T3 = day 19–24). Both ovaries were manually three-dimensionally segmented on b = 1500 s/mm2; apparent diffusion coefficient (ADC) calculation and kurtosis fitting (Dapp, Kapp) were performed. Differences in ADC, Dapp and Kapp between time points and groups were compared using repeated measures ANOVA and t-test after Shapiro-Wilk and Brown-Forsythe test for normality and equal variance.ResultsIn women with a natural menstrual cycle, ADC and kurtosis variables showed significant changes in ovaries with the dominant follicle between T1 vs T2 and T1 vs T3, whilst no differences were observed between T2 vs T3: ADC ± SD for T1 1.524 ± 0.160, T2 1.737 ± 0.160, and T3 1.747 ± 0.241 μm2/ms (p = 0.01 T2 vs T1; p = 1.0 T2 vs T3, p = 0.003 T3 vs T1); Dapp ± SD for T1 2.018 ± 0.140, T2 2.272 ± 0.189, and T3 2.230 ± 0.256 μm2/ms (p = 0.003 T2 vs T1, p = 1.0 T2 vs T3, p = 0.02 T3 vs T1); Kapp ± SD for T1 0.614 ± 0.0339, T2 0.546 ± 0.0637, and T3 0.529 ± 0.0567 (p < 0.001 T2 vs T1, p = 0.86 T2 vs T3, p < 0.001 T3 vs T1). No significant differences were found in the contralateral ovaries or in females taking OC.ConclusionPhysiological cycle-dependent changes in quantitative diffusivity variables of ovaries should be considered especially when interpreting radiomics analyses in reproductive women.  相似文献   

19.
The multi-components of T2 relaxation in cartilage and tendon were investigated by microscopic MRI (μMRI) at 13 and 26 μm transverse resolutions. Two imaging protocols were used to quantify T2 relaxation in the specimens, a 5-point sampling and a 60-point sampling. Both multi-exponential and non-negative-least-square (NNLS) fitting methods were used to analyze the μMRI signal. When the imaging voxel size was 6.76 × 10−4 mm3 and within the limit of practical signal-to-noise ratio (SNR) in microscopic imaging experiments, we found that (1) canine tendon has multiple T2 components; (2) bovine nasal cartilage has a single T2 component; and (3) canine articular cartilage has a single T2 component. The T2 profiles from both 5-point and 60-point methods were found to be consistent in articular cartilage. In addition, the depletion of the glycosaminoglycan component in cartilage by the trypsin digestion method was found to result in a 9.81–20.52% increase in T2 relaxation in articular cartilage, depending upon the angle at which the tissue specimen was oriented in the magnetic field.  相似文献   

20.

Purpose

To compare the diagnostic performance of the noncontrast MRI including DWI to the standard MRI for detecting hepatic malignancies in patients with chronic liver disease.

Materials and methods

We included 135 patients with 136 histologically-confirmed hepatocellular carcinomas (HCCs), 12 cholangiocarcinomas, and 34 benign lesions (≤ 2.0 cm), and 22 patients with cirrhosis but no focal liver lesion who underwent 3.0 T liver MRI. Noncontrast MRI set (T1- and T2-weighted images and DWI) and standard MRI set (gadoxetic acid-enhanced and noncontrast MRI) were analyzed independently by three observers to detect liver malignancies using receiver operating characteristic analysis.

Results

The Az value of the noncontrast MRI (mean, 0.906) was not inferior to that of the combined MRI (mean, 0.924) for detecting malignancies by all observers (P > 0.05). For each observer, no significant difference was found in the sensitivity and specificity between the two MRI sets for detecting liver malignancies and distinguishing them from benign lesions (P > 0.05), whereas negative predictive value was higher with the combined MRI than with the noncontrast MRI (P = 0.0001). When using pooled data, the sensitivity of the combined MRI (mean 94.8%) was higher than that of the noncontrast MRI (mean, 91.7%) (P = 0.001), whereas specificity was equivalent (78.6% vs 77.5%).

Conclusion

Noncontrast MRI including DWI showed reasonable performance compared to the combined gadoxetic acid-enhanced and noncontrast MRI set for detecting HCC and cholangiocarcinoma and differentiating them from benign lesions in patients with chronic liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号