首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamics and attitude motion of the three-axis stabilized spacecraft installed with lateral solar arrays is investigated in terms of the rigid-flexible coupled global modes of the system. The spacecraft consists of a rigid platform with small moment of inertia and two groups of flexible solar arrays with relatively large moment of inertia installed on the rigid rotation shafts. The rigid-flexible coupled dynamic model of the spacecraft is established by using the Hamiltonian Principle. The global mode method is employed to work out the natural frequency and global modal shapes of the rigid-flexible coupled dynamic model combined with corresponding boundary conditions. To validate the effectiveness of the analytical results obtained by global mode method, the natural frequencies and mode shapes obtained from finite element model using MSC.Patran software are used as a reference. A numerical example is given to show that the results obtained from both methods are matched very well (the relative errors of the corresponding frequencies are small enough) and the rigid motion of the platform is coupled with the vibration mode of the flexible solar arrays. This implies that the global analytical modes can be used to accurately describe the rigid-flexible coupled motion of the spacecraft. By comparing with the finite element model, the reduced dynamical model derived in terms of the global modes of the system has a lower dimension. Numerical simulations for the system with variations of parameters and dynamic responses analysis for different applied forces are performed to illustrate that, the characteristics of the model are affected by inner and external factors.  相似文献   

2.
The paper is aimed to examine dynamic behaviors of a dual-disc bearing-rotor system in multi-fault state, and the crack detection based on the orbit morphological characteristics and vibration responses is proposed. Dynamic response and vibration signal analysis are two significant studies in rotor system. Most researchers have simulated the nonlinear dynamics and analyzed the fault signal using various methods separately. However, the fault feature from vibration signal is tightly connected with the dynamic mechanism in the rotor system, especially in rotor system with coupling multi-fault. In the paper, the dynamic model of the dual-disc bearing-rotor system is established, which takes into account the effects of crack, rub-impact and nonlinear oil-film forces. The vibration responses and the effect of crack on dual-disc rotor system with multi faults are investigated. The existence of crack and the coupling effect of multi faults enrich dynamic behavior of the dual-disc bearing-rotor system, and the response near the 1/2 subcritical speed provides a criterion for crack detection. Experiment investigation is attempted for the first time, which is based on the changes of crack depth and rotation speed for multi-fault dual-disc rotor system. The analysis of the dynamic response and the orbit morphological characteristics from experiment can effectively detect the crack information.  相似文献   

3.
一、引言随着空间事业的不断发展,空间飞行器的种类不断增多,其动力学结构也越来越复杂.其中绝大部分飞行器既不是单一的刚体,也不是单一的弹性体,而是既有弹性体又有刚体组成的混合体.带有大型太阳帆板的卫星就是其中的一个典型例子.  相似文献   

4.
《Applied Mathematical Modelling》2014,38(21-22):4985-4994
A rigid–flexible coupling dynamic analysis is presented where a mass is attached to a massless flexible rod which rotates about an axis. The rod is limited to small deformation so that the mass is constrained to move in the plane of rotation. A strongly nonlinear model of the system is established based on the couplings between the elastic deflections of the mass and rigid rotation, in which the mass deflection and rigid rotation are both treated as unknown variables. The additional inertia forces on the mass and coupling mechanism are elucidated in the system model. In the case of varied but prescribed rigid rotation, a set of time-varying differential equations governing mass motion is obtained. The trajectories of mass motion are examined for the spin-up and spin-down rotation. Under constant rigid rotation, a set of ordinary differential equations is further attained, and the issues with dynamic frequencies and critical angular velocity of the system are analyzed. The effects of the centrifugal, Coriolis and tangential inertia forces on the dynamic responses are discussed.  相似文献   

5.
In this study, the repeated discontinuous friction between granular material and contact platform and structural nonlinearity of inclined vibration platform giving rise to the vibration flow-aiding unloading is a complicated process, which has significant effects on the dynamic behaviors and flow characteristics of granular material. A simplified mathematical model of the inclined vibration platform and granular material is deduced by mechanical properties. Based on the equations of motion and a good degree of accuracy and applicability of the process with calculated data reported in the literature, the approximate analytical solution and flow properties are investigated by using the modified incremental harmonic balance method and numerical integration method. Moreover, the influences of friction coefficient, excitation amplitude, nonlinear stiffness and inclined angle on the complicated dynamic behaviors are explored and discussed. It is shown that the different motion paths of granular material on inclined vibration platform are observed depending on the different parameters. The increasing friction coefficient has complicated effects on the nonlinear dynamic behaviors of the granular material. The excitation amplitude and nonlinear stiffness can effectively control the flow characteristics of granular material at low excitation frequency but the inclined angle presents opposite property. The research may contribute to improve unloading efficiency, predict the motion state of granule and provide a theoretic foundation for further design the unloading system.  相似文献   

6.
Multi-step Timoshenko beams coupled with rigid bodies on springs can be regarded as a generalized model to investigate the dynamic characteristics of many structures and mechanical systems in engineering. This paper presents a novel transfer matrix method for the free and forced vibration analyses of the hybrid system. It is modeled as a chain system, where each beam and each rigid body with its supporting spring are dealt with one element, respectively. The transfer equation of each element is deduced based on separation of variables method. The system overall transfer equation is obtained by substituting an element transfer equation into another. Then, the free vibration characteristics are acquired by solving exact homogeneous linear equations. To compute the forced vibration response with modal superposition method, the body dynamic equations and augmented eigenvectors are established, and the orthogonality of augmented eigenvectors is mathematically proved. Without high-order global dynamic equation or approximate spatial discretization, the free and forced vibration analyses of the hybrid system are achieved efficiently and accurately in this study. As an analytical approach, the present method is easy, highly stylized, robust, powerful and general for the complex hybrid systems containing any number of Timoshenko beams and rigid bodies. Four numerical examples are implemented, and the results show that this method is computationally efficient with high precision.  相似文献   

7.
This analysis deals with one of the basic problem category of vibratory systems, means the complete and complex characterization of elastic and viscous isolators behaviour under dynamic loads such as vibrations, seismic waves, shocks, etc. Usually, the dynamic characteristics of vibration isolators made by elastomeric materials are considered to have a constant shape for a certain practical case. It is ignored the thermal phenomenon inside the isolator block during the exploitation cycles and its influences on the proper characteristic parameters. This usual approximation leads to more or less significant differences between simulation and practical evolution of a vibration isolator subjected to the same dynamic load. Continuous changes of rigidity modulus and/or dissipative characteristics due to internal thermal effects imply aleatory evolution of the isolated system, unstable movements and resonance imminence danger. The partial results of this analysis dignify the linkage between thermal effects into the elastomeric isolator and its essential dynamic parameters. Using of these correlations frames the seismic shock and vibration protective devices designing and deployment areas. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
航天器中精密器件的稳定性和工作精度决定于器件布置位置的局部结构振动特性,而航天器局部振动特性又受到精密器件布局的影响.因此,航天器中精密器件的布局优化是确保其稳定高效工作的前提条件.该文建立了粘接精密器件的航天器局部柔性薄板结构的动力学模型,发展保结构分析方法模拟了薄板结构的局部振动特性.考虑精密器件形状和尺寸、散热间...  相似文献   

9.
The chaotic vibration analysis of a rotating flexible continuous shaft-disk system with rub-impact is studied. The system is modeled as a continuous shaft with a rigid disk in its mid-section with Coriolis and centrifugal effects included. The governing partial differential equations of motion are extracted based on the Euler–Bernoulli beam theory. The assumed modes method is used to discretize partial differential equations and the resulting equations are solved via numerical methods. Time series, phase plane portrait, power spectra, Poincaré map, bifurcation diagrams, and Lyapunov exponents are used to analyze the vibration behavior of the system. Initially, the case is investigated in which no Coriolis or centrifugal effects are considered. Then, another case is studied in which these effects are considered. The results confirm the claim that the rub-impact occurs at lower speed ratios due to the Coriolis and centrifugal forcing effects, and that the dynamic behaviors of the system for the two cases are much different as a result of the rub-impact in the second case. Periodic, quasi-periodic, sub-harmonic, and chaotic states can be observed while the appearance or disappearance of the chaos is different. The centrifugal forcing effect plays a greater role than that of the Coriolis force on the incidence of the rub-impact. These results can be useful in identifying the undesirable behaviors in these types of rotating systems.  相似文献   

10.
基于有限体积法和有限元法,结合动网格控制技术,建立了横向流体作用下三维弹性直管流致振动计算的数值模型,实现了计算结构动力学与计算流体力学之间的联合仿真.首先,通过对刚性管的静止绕流计算,研究了网格离散方式和不同湍流模型对圆柱类结构静止绕流流场特征的影响和预测能力,得到了适用于双向耦合分析的CFD模型;其次,利用基于双向流固耦合方法的流致振动模型,计算并分析了流体力与结构位移间的相位关系,指出流体力与位移间的相位差是由流体力引起的,同时对双向耦合和单向耦合进行了比较分析;最后通过对直管流致振动的数值计算,联合管表面压力、尾流区时均速度、分离角等时均量,分析了尾流区的流场特征.  相似文献   

11.
在地球引力场和磁场中,在考虑了航天器结构内阻尼及气体阻力的影响条件下,研究磁性刚体航天器在绕地球圆轨道运行时可能出现的混沌问题.根据动量矩定理建立动力学模型,应用Melnikov方法证明了动力系统在一定条件下会发生混沌行为,并且给出了解析判据.最后利用数值仿真分析了系统的动力学行为,理论结果与数值仿真结果相一致.  相似文献   

12.
The problem on free vibrations of wide sandwich beams is tackled in this paper. Torsional and warping effects in addition to flexure are included in the formulation of the dynamic problem. In order to show the effects of bending-torsion coupling and warping on the natural frequencies and the corresponding vibration modes, three cases are considered. First, the warping and torsion effects are neglected, second, the effect of warping on the coupling terms is neglected, and third, the effect of warping on the coupling terms is included. The viscoelastic core is modeled by elastic translational and rotational springs. The finite-difference method is used to solve the partial differential equations of motion with different boundary conditions for the top and bottom layers. Results for different materials, fiber orientations, depth-to-width ratios, and boundary conditions are found. The natural frequencies and the corresponding vibration modes obtained are in a good agreement with those cited in the literature. If the bending-torsion coupling is pronounced, the inclusion of warping affects the natural frequency considerably.__________Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 41, No. 2, pp. 163–176, April–May, 2005.  相似文献   

13.
Earth-orbiting spacecraft often contain solar arrays or antennas supported by a preloaded mast. Due to weight and cost considerations, the supporting structures of the spacecraft appendages are made extremely light and flexible. Therefore, it is essential to investigate the influence of all physical and structural parameters on the dynamic behavior of the overall structure. The governing equation of motion and its general solution for the preloaded mast are developed. Furthermore, the mass moment of inertia of the mast subjected to bending vibrations is included in the governing equation of motion to investigate its influence on determining the circular frequencies. To verify the developed formulations, a finite element technique was implemented. The accuracy and limitation of the technique on calculating the circular frequencies are discussed. Although the study described in this paper primarily focuses on the mast for the space station solar arrays, the developed formulations and techniques can be applied to any large and flexible beam in zero gravity.  相似文献   

14.
王康宁 《中国科学A辑》1979,22(Z1):178-190
细长体的飞行器在飞行中考虑了既有刚性运动又有弹性振动的运动,由于刚性运动对弹性振动的影响,通过安装在飞行器上面的仪表所测得的角速度作为反馈信号输入到控制器,由控制器输出端输出信号到执行机构来实现反馈控制,把刚性运动飞行器、弹性振动飞行器同时考虑作受控对象,这里我们研究了由刚性飞行器、弹性飞行器和控制器三者形成的闭环系统的弹性振动问题,得到了求闭环系统的频率和振型的公式,设计控制器使得闭环系统渐近稳定的条件和能控性、能观测性的条件。  相似文献   

15.
把赤道东太平洋地区大气对流层,海洋混合层看作是在定常热源(太阳辐射)驱动下的动力系统,利用一个局域平均的热力学气候模式,建立了海气耦合自激振荡模型,得到了一个封闭的自治的二次系统,对系统进行了线性和非线性分析.结合系统稳定的极限环解,对海气耦合的物理机制进行了探讨.和观测事实的比较表明,在赤道东太平洋区域平均的以500 hPa为代表的大气对流层的温度距平和海表温度距平,在相平面上和极限环解定性上很一致.这为研究热带海气相互作用的年际变化提供了一个理论模型.  相似文献   

16.
旋转刚柔耦合系统在航空航天、机器人、高速机构以及车辆等领域有着广泛的应用,主要描述负载在旋转刚体上的柔性梁的运动。对旋转刚柔耦合系统施加控制使得整个闭环系统达到:1)旋转刚体以预期的旋转角速度运动;2)负载在刚体上的柔性梁镇定。本文将从控制器设计的角度出发,介绍目前在旋转刚柔耦合系统控制方面取得的主要研究成果。  相似文献   

17.
In this paper the problem of modelling of large flexible spacecraft and their stabilization under the influence of orbital (radial) perturbation is considered. A complete dynamics of the spacecraft consisting of a rigid bus and a flexible beam is derived using Hamilton's principle. The equations of motion consist of a coupled system of partial differential equations governing the vibration of the flexible beam and ordinary differential equations describing the translational and rotational motions of the rigid bus. The asymptotic stability of the system is proved using Lyapunov's approach. Simple feedback controls are suggested for the stabilization of the system. For illustration, numerical simulations are carried out, giving interesting results.  相似文献   

18.
This study investigates the lateral–torsional coupling effects on the nonlinear dynamic behavior of a rotating flexible shaft–disk system. The system is modeled as a continuous shaft with a rigid disk in its mid span. Coriolis and centrifugal effects due to shaft flexibility are also included. The partial differential equations of motion are extracted under the Rayleigh beam theory. The assumed mode method is used to discretize partial differential equations and the resulting equations are solved via numerical methods. The analytical methods used in this work include time series, phase plane portrait, power spectrum, Poincaré map, bifurcation diagrams, and Lyapunov exponents. The main objective of the present study is to investigate the torsional coupling effects on the chaotic vibration behavior of a system. Periodic, sub-harmonic, quasi-periodic, and chaotic states can be observed for cases with and without torsional effects. As demonstrated, inclusion of the torsional–lateral coupling effects can primarily change the speed ratios at which rub–impact occurs. Also, substantial differences are shown to exist in the nonlinear dynamic behavior of the system in the two cases.  相似文献   

19.
The purpose of this paper is to investigate the coupling vibration characteristics of a flexible shaft-disk-blades system with mistuned features. There are some new phenomena due to the coupling effects of shaft-bending, shaft-torsion, disk-transverse and blade-bending. In this investigation, this paper mainly focuses on the influence of mistuned features of the blade's length and the stagger angle. It is found that there are four types of coupling modes: the coupling mode of shaft bending, disk transverse and blade bending (SDB), the coupling mode of shaft torsion disk transverse-blade bending (TDB), the coupling mode of disk transverse and blade bending (DB), the repeated mode of blade bending-blade bending (BB). With the effect of mistuned features, the natural frequencies and the coupling mode type will change correspondingly. With the mistuning value of blade length employed in this study, the TDB mode in the tuned system will disappear and shift into TSDB mode instead, and one of the repeated SDB modes will be replaced by STDB modes. Due to this mistuned features, the blades and disk experience a certain degree of vibration localization phenomenon. Different from the length feature, the influence of mistuning values of blade's stagger angle mainly take effect on the coupling modes. At last, by inspection on the Campbell diagrams, the influence of rotational speed on the transformation of natural frequencies is illustrated on the tuned/mistuned flexible shaft-disk-blades coupling structure.  相似文献   

20.
We consider the problem of rigorous modeling and stabilization of large satellites with several flexible appendages, such as a boom, tower, solar panel etc., all located arbitrarily on the rigid bus. The complete dynamics of the system is described by a set of hyperbolic partial differential equations coupled with a set of ordinary differential equations. These two sets of equations are very strongly coupled and describe the interaction among the rigid and the flexible members of the spacecraft. We propose feedback control schemes that make the system asymptotically stable in the sense that all the bus angular motions and the vibrations of the elastic members eventually decay to zero. We also present simulation results illustrating stabilization of the spacecraft by the feedback controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号