首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper, a general integral equation is presented to calculate the forces exerted on a two-dimensional (2-D) body of arbitrary shape immersed in unsteady, incompressible flows. By finding the general solutions of a set of Laplace equations with particular boundary conditions, the equation can be simplified to produce a simplified formula for calculating the forces. The simplified formula consists of three parts, representing contributions from different physical phenomena: added mass force and/or inertial force in inviscid flow, the force caused by the deformation of fluid and viscosity and the force caused by the convection of fluid with nonzero circulation. It can be applied to any 2-D arbitrary body in viscous or inviscid, steady or unsteady incompressible flow. As the formula excludes either temporal derivatives of velocity or spatial derivatives of vorticity in the flow field, the numerical errors contained in the numerical solution of velocity and vorticity fields will not be magnified, and therefore the resulting force calculated is more accurate. Most importantly, the formula presents an alternative method for obtaining the added mass of a 2-D body of arbitrary shape accelerating in a fluid. For bodies of simple shape, such as a circle, ellipse and plate, the added masses predicted using the present method are in agreement with that obtained by conventional methods. For bodies of complex shape, the present method only requires the calculation of the first two coefficients of the conformal transformation and cross-sectional area.  相似文献   

2.
Accurate momentum coupling model is vital to simulation of dispersed multiphase flows. The overall force exerted on a particle is divided into four physically meaningful contributions, i.e., quasi-steady, stress-gradient, added-mass, and viscous-unsteady (history) forces. Time scale analysis on the turbulent multiphase flow and the viscous-unsteady kernel shows that the integral representation of the viscous-unsteady force is required except for a narrow range of particle size around the Kolmogorov length scale when particle-to-fluid density ratio is large. Conventionally, the particle-to-fluid density ratio is used to evaluate the relative importance of the unsteady forces (stress-gradient, added-mass, and history forces) in the momentum coupling. However, it is shown from our analysis that when particle-to-fluid density ratio is large, the importance of the unsteady forces depends on the particle-to-fluid length scale ratio and not on the density ratio. Provided the particle size is comparable to the smallest fluid length scale (i.e., Kolmogorov length scale for turbulence or shock thickness for shock-particle interaction) or larger, unsteady forces are important in evaluating the particle motion. Furthermore, the particle mass loading is often used to estimate the importance of the back effect of particles on the fluid. An improved estimate of backward coupling for each force contribution is established through a scaling argument. The back effects of stress-gradient and added-mass forces depend on particle volume fraction. For large particle-to-fluid density ratio, the importance of the quasi-steady force in backward coupling depends on the particle mass fraction; while that of the viscous-unsteady force is related to both particle mass and volume fractions.  相似文献   

3.
The stability of an unbounded plane elastic plate in gas moving on one side of the plate and at rest on the other is analyzed. The gases are inviscid and in general different. The plate is under tension and has flexural stiffness. It is shown that the system is always unstable to plane sinusoidal perturbations with wave vector parallel to the velocity. As limiting cases, a tangential discontinuity between the two gases and unilateral flow past a plate with constant pressure on the opposite side are considered. In these cases, the conditions of stability to plane perturbations are non-trivial and are investigated below.  相似文献   

4.
This paper describes a method for determining the fluid forces on oscillating bodies in viscous fluid when the corresponding flow problem has been solved using the finite element method. These forces are characterized by the concept of added mass, added damping and added force. Numerical results are obtained for several example body shapes. Comparison is made with exact analytical results and other finite element results for the limiting cases of Stoke's flow and inviscid flow, and good agreement is obtained. The results for finite values of the body amplitude parameter β show the appearance of added force from the steady streaming component of the flow for asymmetric bodies. Results are also obtained for the associated flow where the fluid remote from a fixed body is oscillating.  相似文献   

5.
模型昆虫翼作非定常i运动时的气动力特性   总被引:9,自引:0,他引:9  
兰世隆  孙茂 《力学学报》2001,33(2):173-182
基于Navier-Stokes方程的数值解,研究了一模型昆虫翼在小雷诺数(Re=100)下作非定常运动时的气动力特性.这些运动包括翼启动后的常速转动,快速加、减速转动,常速转动中快速上仰(模拟昆虫翼的上挥或下拍、翻转等运动).有如下结果在小雷诺数下,模型昆虫翼以大攻角(α=35°)作常速转动运动时,由于失速涡不脱落,可产生较大的升力系数.其机理是翼转动时,翼尖附近(该处线速度大)上翼面压强比翼根附近(该处线速度小)的小得多,因而存在展向压强梯度,同时存在着沿展向的离心力,此展向压强梯度和离心力导致的展向流动在失速涡的轴向方向,其可避免失速涡脱落.模型昆虫翼在快速加、减速转动和快速上仰运动中,虽然雷诺数小,但由于在短时间内产生了大涡量,也可产生十分大的气动力,例如在快速上仰运动中,升力系数可大于10.  相似文献   

6.
I. L. Logov 《Fluid Dynamics》1983,18(6):978-983
A study is made of the development of the flow of a viscous incompressible fluid from the state of rest in a circular cylindrical tube with constant pressure gradient. The tangential frictional stress at an arbitrary point of the flow is found as a function of the pressure gradient and the ratio of the values, averaged over the flow, of the accelerations corresponding to the considered time and the initial time. An analysis is made of the exact solution of the linear equation [1], which shows that the development of the drag forces in the case of viscous flow is determined by a characteristic time which depends on the kinematic viscosity and the tube radius. The value of the hydraulic friction drag coefficient for the unsteady flow is determined more accurately by introducing a correction that takes into account the velocity profile of the flow. The equations of motion are analyzed, and six different cases of development of the flow are described for the characteristic values of the dimensionless numbers. These cases determine the methods of calculation of one-dimensional problems. This question has not been fully clarified in earlier work [2, 3].  相似文献   

7.
Finite-sized inertial spherical particles are fully-resolved with the immersed boundary projection method(IBPM) in the turbulent open-channel flow by direct numerical simulation(DNS). The accuracy of the particle surface force models is investigated in comparison with the total force obtained via the fully-resolved method. The results show that the steady-state resistance only performs well in the streamwise direction, while the fluid acceleration force, the added-mass force, and the shear-induced Saffman lift can effectively compensate for the large-amplitude and high-frequency characteristics of the particle surface forces, especially for the wall-normal and spanwise components. The modified steady-state resistance with the correction effects of the acceleration and the fluid shear can better represent the overall forces imposed on the particles, and it is a preferable choice of the surface force model in the Lagrangian point-particle method.  相似文献   

8.
The steady two-dimensional laminar mixed-convection flow past a horizontal plate of finite length is analysed for large Péclet numbers, small Prandtl numbers and weak buoyancy effects. The plate is placed in a channel of finite width, with the plane walls of the channel being parallel to the plate. The temperature of the plate is assumed to be constant. The hydrostatic pressure difference across the wake behind the plate is compensated by a perturbation of the inviscid channel flow. This outer flow perturbation affects the temperature distribution in the thermal boundary layer at the plate and the heat transfer rate, respectively. Solutions in closed form are given. The forces acting on the plate due to the potential flow perturbation are also determined.  相似文献   

9.
Non-Euclidean plates are a subset of the class of elastic bodies having no stress-free configuration. Such bodies exhibit residual stress when relaxed from all external constraints, and may assume complicated equilibrium shapes even in the absence of external forces. In this work we present a mathematical framework for such bodies in terms of a covariant theory of linear elasticity, valid for large displacements. We propose the concept of non-Euclidean plates to approximate many naturally formed thin elastic structures. We derive a thin plate theory, which is a generalization of existing linear plate theories, valid for large displacements but small strains, and arbitrary intrinsic geometry. We study a particular example of a hemispherical plate. We show the occurrence of a spontaneous buckling transition from a stretching dominated configuration to bending dominated configurations, under variation of the plate thickness.  相似文献   

10.
Fluid–elastic systems nearing dynamic instabilities are known to be sensitive to fluctuations in fluid flow. A cantilever plate in axial flow with random temporal fluctuations, is examined numerically for its dynamical behaviour. The numerical model comprises of a nonlinear structural model for the flexible plate, coupled with unsteady lumped vortex model for the fluid forces. As the mean flow velocity is increased, the system transitions to limit cycle oscillations from a state of rest, through a regime of intermittent oscillations. The conditions for onset and disappearance of intermittency are discussed and are interpreted using stochastic bifurcation theories. While the onset of intermittency is found to be unaffected by the time scales of the flow fluctuations, they are observed to affect the length of the intermittency regime. The effect of plate flexibility on intermittency is also discussed.  相似文献   

11.
无网格算法在多段翼型流动计算中的应用   总被引:5,自引:1,他引:5  
研究了一种求解欧拉方程的无网格算法,发展出了一套布点及点云自动生成的方法;在点云离散的基础上,采用最小二乘法求解矛盾方程的方法来求取空间导数,进而获得数值通量;采用四步龙格-库塔方法进行时间推进,并引入当地时间步长和残值光顺等加速收敛措施。通过对NA-CA0012翼型的跨音速流动和多段翼型复杂绕流的数值模拟,验证了上述无网格算法的正确性和实用性。  相似文献   

12.
Motivated by the unsteady force generation of flying animals, vortex formation and vorticity transport processes around small aspect-ratio translating and rotating plates with a high angle of attack are investigated. Defocusing Digital Particle Image Velocimetry was employed to explore the structure and dynamics of the vortex generated by the plates. For both translating and rotating cases, we observe the presence of a spanwise flow over the plate and the consequent effect of vorticity transport due to the tilting of the leading-edge vortex. While the spanwise flow is confined inside the leading-edge vortex for the translating case, it is widely present over the plate and the wake region of the rotating case. The distribution of the spanwise flow is a prominent distinction between the vortex structures of these two cases. As the Reynolds number decreases, due to the increase in viscosity, the leading-edge and tip vortices tend to spread inside the area swept by the rotating plate. The different vorticity distributions of the low and high Reynolds number cases are consistent with the difference in measured lift forces, which is confirmed using the vorticity moment theory.  相似文献   

13.
The problem of two-layer heavy inviscid fluid flow past a vortex in the presence of a semi-infinite plate on the interface when the fluids have different densities and velocities at infinity is solved in the linear approximation. The forces exerted on the vortex and the plate and the shape of the interface are determined as functions of the location of the vortex, its intensity, the Froude number, the free-stream density ratio and the velocities.  相似文献   

14.
An inviscid theoretical method that is applicable to non-periodic motions and that accounts for large amplitudes and non-planar wakes (large-angle unsteady thin airfoil theory) is developed. A pitch-up, hold, pitch-down motion for a flat plate at Reynolds number 10,000 is studied using this theoretical method and also using computational (immersed boundary method) and experimental (water tunnel) methods. Results from theory are compared against those from computation and experiment which are also compared with each other. The variation of circulatory and apparent-mass loads as a function of pivot location for this motion is examined. The flow phenomena leading up to leading-edge vortex shedding and the limit of validity of the inviscid theory in the face of vortex-dominated flows are investigated. Also, the effect of pitch amplitude on leading-edge vortex shedding is examined, and two distinctly different vortex-dominated flows are studied using dye flow visualizations from experiment and vorticity plots from computation.  相似文献   

15.
张军锋  刘庆帅  曹晨  陈淮 《应用力学学报》2020,(1):308-314,I0021,I0022
为明确冷却塔在水平地震下的内力环向分布特征及内在原因,同时探究不同地震波时程与规范反应谱所得内力差异的原因,以某大型双曲冷却塔为例,在动力特性分析的基础上,通过反应谱方法和时程方法的水平地震响应计算及对比分析,对上述两个问题进行了研究。研究表明:由于仅侧弯振型对水平地震有贡献,而塔筒的侧弯振型和实际响应均表现为整体侧倾并伴随微弱的截面“流动”变形,这也使塔筒各内力的环向分布分别呈现正弦、余弦分布特征;其整体侧倾可类比于悬臂杆结构,塔筒子午向轴力FY、子午向弯矩MY、剪力FXY和扭矩MXY的环向分布可借助悬臂杆侧倾时截面正应力和剪应力分布来解释;而截面“流动”变形则决定了环向轴力FX和环向弯矩MX的环向分布;整体侧移显著而截面变形极小也使FY和FXY的幅值在塔筒中下部明显大于FX;由于冷却塔第1阶侧弯振型在水平地震响应中往往起绝对主导作用,因此可先对所选地震波计算得到其反应谱,对比第1阶侧弯振型周期对应的水平地震影响系数α值,即可初步推断不同时程及规范反应谱方法所得结果的大小关系。  相似文献   

16.
This paper proposes a multigrid technique for Cartesian grid flow solvers. A recently developed ghost body‐cell method for inviscid flows is combined with a nested‐level local refinement procedure, which employs multigrid to accelerate convergence to steady state. Different from standard multigrid applications for body‐fitted grids, a fictitious residual needs to be defined in the ghost cells to perform a correct residual collection and thus to avoid possible stalling of the multigrid procedure. The efficiency of the proposed local refinement multigrid Cartesian method is demonstrated for the case of the inviscid subsonic flow past a circular body. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is the companion to Part I under the same title, and is mainly concerned with wave loads due to nonlinear waves of solitary and cnoidal type propagating over a submerged, horizontal and thin plate. Following the development of the nonlinear model (via the Level I Green–Naghdi theory) for the flow of an incompressible and inviscid fluid given in Part I, the wave-induced loads on the submerged, fixed (and rigid) plate are calculated, and results are compared with the available laboratory data, and with linear solutions of the problem. Dependence of the loads on wave conditions (wave height and wavelength) and plate characteristics (submergence depth and plate width) are studied for both the solitary and cnoidal wave cases.  相似文献   

18.
We prove that the rest state of a viscous isothermal gas filling a bounded rigid vessel, is exponentially stable with respect a large class of "weak" perturbations that, in particular, allow for supersonic flow and discontinuous densities. In the inviscid limit, marginal stability is recovered.  相似文献   

19.
Recently Lee and Balachandar proposed analytically-based expressions for drag and lift coefficients for a spherical particle moving on a flat wall in a linear shear flow at finite Reynolds number. In order to evaluate the accuracy of these expressions, we have conducted direct numerical simulations of a rolling particle for shear Reynolds number up to 100. We assume that the particle rolls on a horizontal flat wall with a small gap separating the particle from the wall (L = 0.505) and thus avoiding the logarithmic singularity. The influence of the shear Reynolds number and the translational velocity of the particle on the hydrodynamic forces of the particle was investigated under both transient and the final drag-free and torque-free steady state. It is observed that the quasi-steady drag and lift expressions of Lee and Balachandar provide good approximation for the terminal state of the particle motion ranging from perfect sliding to perfect rolling. With regards to transient particle motion in a wall-bounded shear flow it is observed that the above validated quasi-steady drag and lift forces must be supplemented with appropriate wall-corrected added-mass and history forces in order to accurately predict the time-dependent approach to the terminal steady state. Quantitative comparison with the actual particle motion computed in the numerical simulations shows that the theoretical models quite effective in predicting rolling/sliding motion of a particle in a wall-bounded shear flow at moderate Re.  相似文献   

20.
Linear potential theory in conjunction with the conformal mapping technique are employed to develop rigorous mathematical models for two-dimensional transient sloshing in non-deformable baffled horizontal circular cylindrical vessels, filled with inviscid incompressible fluids to arbitrary depths, and subjected to arbitrary time-dependent lateral accelerations. Three common baffle configurations are considered, namely, a pair of free surface-touching horizontal side baffles, and a central surface-piercing or bottom-mounted vertical baffle of arbitrary extension. The first few normalized antisymmetric/symmetric sloshing frequencies of the partially-filled tanks are tabulated for selected baffle extension and fill depth ratios. Also, the effects of liquid fill depth or baffle length parameter on the impulsive, total and modal convective mass ratios are examined. A ramp-step function is used to replicate the lateral acceleration excitation encountered in an idealized turning maneuver. Durbin's numerical Laplace transform inversion scheme was applied to solve the resulting truncated linear sets of ordinary differential equations in the time-domain. The effects of excitation input time, fill level, and baffle configuration/extension on the force and moment amplification factors are illustrated through appropriate design charts. Furthermore, the transient hydrodynamic responses to a real seismic event are calculated and the effectiveness of baffle configuration/length on suppression of the induced destabilizing lateral forces are examined. Limiting cases are considered and rigorous verifications are made by comparison with the available data as well as with the numerical simulations performed by using a commercial CFD software package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号