首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Projection methods constitute a class of numerical methods for solving the incompressible Navier-Stokes equations. These methods operate using a two-step procedure in which the zero-divergence constraint on the velocity is first relaxed while the velocity evolves, then after a certain period of time the resulting velocity field is projected onto a divergence-free subspace. Although these methods can be quite efficient, there have been certain concerns regarding their formulation. In this paper we show how a formal integration of the Navier-Stokes equations leads to a new and general procedure for the derivation of projection methods. By following this procedure, we show how each of three practical projection methods approximates a system of equations that is equivalent to the Navier-Stokes equations. We also show how the auxiliary boundary conditions required in projection methods are related to the physical boundary conditions. These results should allay the concerns regarding the legitimacy of projection methods, and may assist in their future development.  相似文献   

2.
This work is devoted to the optimal and a posteriori error estimates of the Stokes problem with some non-standard boundary conditions in three dimensions. The variational formulation is decoupled into a system for the velocity and a Poisson equation for the pressure. The velocity is approximated with curl conforming finite elements and the pressure with standard continuous elements. Next, we establish optimal a posteriori estimates.  相似文献   

3.
G. Bonfigli 《PAMM》2007,7(1):4100019-4100020
We propose a formulation of the incompressible Navier-Stokes equations considering a Poisson equation with Neumann boundary conditions for the pressure, and innovative boundary conditions for the velocity. Numerical tests show that the proposed formulation ensures solenoidality of the velocity field. If the initial condition is not divergence-free, exponential decay is observed in time for the error in the fulfillment of the continuity equation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
5.
This paper aims to propose a new modified SPH method with novel treatments at the boundaries. Although SPH methods decrease contradictions due to grid distortions compared to traditional mesh-based methods, the penetration of particles through boundaries and the consistency problem make the simulation of problems with definite boundaries a concern. The use of ghost boundary particles and the insertion of artificial forces at the boundaries are the most popular boundary consistency treatments proposed thus far. The use of artificial forces causes the mixing of molecular and finite theories, which can violate the conservation of momentum. This paper shows how the use of ghost boundary particles can violate the continuity equation in problems with non-zero velocity divergence. This study proposes a novel ghost particle removed SPH (GR-SPH) method that discards all ghost particles and artificial forces at the boundaries. Liner layers and liner particles have been defined inside the domain instead of ghost boundary particles in such a way that the so-called violations can partially be remedied. Based on the continuity equation and kernel function unity specification, a novel truncation correction factor has been defined for density renormalization to override the consistency problem at the boundaries. In addition, a new method is proposed to detect the particles near complex wall boundaries and evaluate the normal distance from boundaries. Finally, some benchmark problems have been solved to show the capabilities of the new modified SPH method for the prediction of both particle location and pressure distribution with acceptable accuracy. The GR-SPH method facilitates programming, with fewer particles contributing to the computations. Comparison of its outcomes with published results shows that the new treatments executed at the boundaries are effective.  相似文献   

6.
The aim of this paper is to propose improved T − ψ finite element schemes for eddy current problems in the three-dimensional bounded domain with a simply-connected conductor. In order to utilize nodal finite elements in space discretization, we decompose the magnetic field into summation of a vector potential and the gradient of a scalar potential in the conductor; while in the nonconducting domain, we only deal with the gradient of the scalar potential. As distinguished from the traditional coupled scheme with both vector and scalar potentials solved in a discretizing equation system, the proposed decoupled scheme is presented to solve them in two separate equation systems, which avoids solving a saddle-point equation system like the traditional coupled scheme and leads to an important saving in computational effort. The simulation results and the data comparison of TEAM Workshop Benchmark Problem 7 between the coupled and decoupled schemes show the validity and efficiency of the decoupled one.  相似文献   

7.
In this paper, we develop and analyze a finite element projection method for magnetohydrodynamics equations in Lipschitz domain. A fully discrete scheme based on Euler semi-implicit method is proposed, in which continuous elements are used to approximate the Navier–Stokes equations and H ( curl ) conforming Nédélec edge elements are used to approximate the magnetic equation. One key point of the projection method is to be compatible with two different spaces for calculating velocity, which leads one to obtain the pressure by solving a Poisson equation. The results show that the proposed projection scheme meets a discrete energy stability. In addition, with the help of a proper regularity hypothesis for the exact solution, this paper provides a rigorous optimal error analysis of velocity, pressure and magnetic induction. Finally, several numerical examples are performed to demonstrate both accuracy and efficiency of our proposed scheme.  相似文献   

8.
本文计算了环形截面的扩压通道内带进气旋绕的流动.在小横向流假定下.用三维边界层积分方程法求解内外壁面附近的流动.通过对子午面上与流线子午投影准正交方向的速度梯度方程和流量不变方程的迭代求解得出边界层外的势流场.计算与实验结果基本符合.本研究可用于分析环形扩压器内带进气予旋的流动.  相似文献   

9.
This paper presents a local Hermite radial basis function interpolation scheme for the velocity and pressure fields. The interpolation for velocity satisfies the continuity equation (mass conservative interpolation) while the pressure interpolation obeys the pressure equation. Additionally, the Dual Reciprocity Boundary Element method (DRBEM) is applied to obtain an integral representation of the Navier-Stokes equations. Then, the proposed local interpolation is used to obtain the values of the field variables and their partial derivatives at the boundary of the sub-domains. This interpolation allows one to obtain the boundary values needed for the integral formulas for velocity and pressure at some nodes within the sub-domains. In the proposed approach the boundary elements are merely used to parameterize the geometry, but not for the evaluation of the integrals as it is usually done. The presented multi-domain approach is different from the traditional ones in boundary elements because the resulting integral equations are non singular and the boundary data needed for the boundary integrals are approximated using a local interpolation. Some accurate results for simple Stokes problems and for the Navier-Stokes equations at low Reynolds numbers up to Re = 400 were obtained.  相似文献   

10.
Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic Poisson equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping operators execute data transfer between the grids. The CGP framework is constructed upon spatial and temporal discretization schemes. This framework has been established for finite volume/difference discretizations as well as explicit time integration methods. In this article we present for the first time a version of CGP for finite element discretizations, which uses a semi-implicit time integration scheme. The mapping functions correspond to the finite-element shape functions. With the novel data structure introduced, the mapping computational cost becomes insignificant. We apply CGP to pressure-correction schemes used for the incompressible Navier-Stokes flow computations. This version is validated on standard test cases with realistic boundary conditions using unstructured triangular meshes. We also pioneer investigations of the effects of CGP on the accuracy of the pressure field. It is found that although CGP reduces the pressure field accuracy, it preserves the accuracy of the pressure gradient and thus the velocity field, while achieving speedup factors ranging from approximately 2 to 30. The minimum speedup occurs for velocity Dirichlet boundary conditions, while the maximum speedup occurs for open boundary conditions.  相似文献   

11.
Pressure correction methods constitute the most widely used solvers for the timedependent Navier-Stokes equations.There are several different pressure correction methods,where each time step usually consists in a predictor step for a non-divergence-free velocity,followed by a Poisson problem for the pressure(or pressure update),and a final velocity correction to obtain a divergence-free vector field.In some situations,the equations for the velocities are solved explicitly,so that the numerical most expensive step is the elliptic pressure problem.We here propose to solve this Poisson problem by a domain decomposition method which does not need any communication between the sub-regions.Hence,this system is perfectly adapted for parallel computation.We show under certain assumptions that this new scheme has the same order of convergence as the original pressure correction scheme(with global projection).Numerical examples for the Stokes system show the effectivity of this new pressure correction method.The convergence order O(k^2)for resulting velocity fields can be observed in the norm l^2(0,T;L^2(Ω)).  相似文献   

12.
Hydraulic jumps are usually used to dissipate energy in hydraulic engineering. In this paper, the turbulent submerged hydraulic jumps are simulated by solving the unsteady Reynolds averaged Navier–Stokes equations along with the continuity equation and the standard k? equations for turbulence modeling. The Lagrangian moving grid method is employed for the simulation of the free surface. In the developed model, kinematic free-surface boundary condition is solved simultaneously with the momentum and continuity equations, so that the water elevation can be obtained along with velocity and pressure fields as part of the solution. Computational results are presented for Froude numbers ranging from 3.2 to 8.2 and submergence factors ranging from 0.24 to 0.85. Comparisons with experimental measurements show that numerical model can simulate the velocity field, variation of free surface, maximum velocity, Reynolds shear and normal stresses at various stations with reasonable accuracy.  相似文献   

13.
This article presents an extension of smoothed particle hydrodynamics (SPH) to non-isothermal free surface flows during the injection molding process. Specifically, we use the method presented by Xu and Yu, Appl. Math. Model. 48 (2017) pp. 384–409, in which the corrected kernel gradient is implemented to increase the computational accuracy and the Rusanov flux is introduced into the continuity equation to alleviate large and random pressure oscillations. To model non-isothermal free surface flows, a working SPH discretization of the temperature equation is derived. An enhanced treatment of the wall boundary is further developed, which can model arbitrary-shaped mold walls. The proposed SPH method is first validated by solving non-isothermal Couette flow and non-isothermal injection molding of a circular disc with a core and comparing the SPH results with those obtained by other numerical methods or experiments. We then extend the numerical method to non-isothermal injection molding of F-shaped and N-shaped cavities. The convergence of the method is examined with several different particle sizes. The effects of the operating conditions (e.g., injection temperature, temperature of the mold wall, and injection velocity) on the flow behavior are analyzed. All the results illustrate that the present SPH method is a powerful computational tool for simulations of non-isothermal free surface flows during the injection molding process.  相似文献   

14.
The planetary geostrophic equations with inviscid balance equation are reformulated in an alternate form, and a fourth-order finite difference numerical method of solution is proposed and analyzed in this article. In the reformulation, there is only one prognostic equation for the temperature field and the velocity field is statically determined by the planetary geostrophic balance combined with the incompressibility condition. The key observation is that all the velocity profiles can be explicitly determined by the temperature gradient, by utilizing the special form of the Coriolis parameter. This brings convenience and efficiency in the numerical study. In the fourth-order scheme, the temperature is dynamically updated at the regular numerical grid by long-stencil approximation, along with a one-sided extrapolation near the boundary. The velocity variables are recovered by special solvers on the 3-D staggered grid. Furthermore, it is shown that the numerical velocity field is divergence-free at the discrete level in a suitable sense. Fourth order convergence is proven under mild regularity requirements. R. Samelson was supported by NSF grant OCE04-24516 and Navy ONR grant N00014-05-1-0891. R. Temam was supported by NSF grant DMS-0604235 and the research fund of Indiana University. S. Wang was supported by NSF grant DMS-0605067 and Navy ONR grant N00014-05-1-0218.  相似文献   

15.
A genuine variational principle developed by Gyarmati, in the field of thermodynamics of irreversible processes unifying the theoretical requirements of technical, environmental and biological sciences is employed to study the effects of uniform suction and injection on MHD flow adjacent to an isothermal wedge with pressure gradient in the presence of a transverse magnetic field. The velocity distribution inside the boundary layer has been considered as a simple polynomial function and the variational principle is formulated. The Euler-Lagrange equation is reduced to a simple polynomial equation in terms of momentum boundary layer thickness. The velocity profiles, displacement thickness and the coefficient of skin friction are calculated for various values of wedge angle parameter m, magnetic parameter ξ and suction/injection parameter H. The present results are compared with known available results and the comparison is found to be satisfactory. The present study establishes high accuracy of results obtained by this variational technique.  相似文献   

16.
A mathematical model is presented for multiphysical transport of an optically-dense, electrically-conducting fluid along a permeable isothermal sphere embedded in a variable-porosity medium. A constant, static, magnetic field is applied transverse to the cylinder surface. The non-Darcy effects are simulated via second order Forchheimer drag force term in the momentum boundary layer equation. The surface of the sphere is maintained at a constant temperature and concentration and is permeable, i.e. transpiration into and from the boundary layer regime is possible. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite difference scheme. Increasing porosity (ε) is found to elevate velocities, i.e. accelerate the flow but decrease temperatures, i.e. cool the boundary layer regime. Increasing Forchheimer inertial drag parameter (Λ) retards the flow considerably but enhances temperatures. Increasing Darcy number accelerates the flow due to a corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. Thermal radiation is seen to reduce both velocity and temperature in the boundary layer. Local Nusselt number is also found to be enhanced with increasing both porosity and radiation parameters.  相似文献   

17.
Summary We propose a multidomain spectral collocation scheme for the approximation of the two-dimensional Stokes problem. We show that the discrete velocity vector field is exactly divergence-free and we prove error estimates both for the velocity and the pressure.Deceased  相似文献   

18.
We study the unsteady motion of a viscoelastic fluid modeled by a second-order fluid where normal stress coefficients and viscosity depend on the shear rate by using a power-law model. To study this problem, we use the one-dimensional nine-director Cosserat theory approach which reduces the exact three-dimensional equations to a system depending only on time and on a single spatial variable. Integrating the equation of conservation of linear momentum over the tube cross-section, with the velocity field approximated by the Cosserat theory, we obtain a one-dimensional system. The velocity field approximation satisfies both the incompressibility condition and the kinematic boundary condition exactly. From this one-dimensional system we obtain the relationship between average pressure and volume flow rate over a finite section of the tube with constant and variable radius. Also, we obtain the correspondent equation for the wall shear stress which enters directly in the formulation as a dependent variable. Attention is focused on some numerical simulation of unsteady/steady flows for average pressure, wall shear stress and on the analysis of perturbed flows.  相似文献   

19.
This paper proposes a weak Galerkin finite element method to solve incompressible quasi-Newtonian Stokes equations. We use piecewise polynomials of degrees k + 1(k 0) and k for the velocity and pressure in the interior of elements, respectively, and piecewise polynomials of degrees k and k + 1 for the boundary parts of the velocity and pressure, respectively. Wellposedness of the discrete scheme is established. The method yields a globally divergence-free velocity approximation. Optimal priori error estimates are derived for the velocity gradient and pressure approximations. Numerical results are provided to confirm the theoretical results.  相似文献   

20.
We study two novel decoupled energy‐law preserving and mass‐conservative numerical schemes for solving the Cahn‐Hilliard‐Darcy system which models two‐phase flow in porous medium or in a Hele–Shaw cell. In the first scheme, the velocity in the Cahn–Hilliard equation is treated explicitly so that the Darcy equation is completely decoupled from the Cahn–Hilliard equation. In the second scheme, an intermediate velocity is used in the Cahn–Hilliard equation which allows for the decoupling. We show that the first scheme preserves a discrete energy law with a time‐step constraint, while the second scheme satisfies an energy law without any constraint and is unconditionally stable. Ample numerical experiments are performed to gauge the efficiency and robustness of our scheme. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 936–954, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号