首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motivated by the growing scientific and engineering interest in evacuated tube railway transportation systems, in this paper we numerically study the influence of the vacuum degree on the flow field around a train capsule running in an evacuated tube with circular section. The vacuum degree is increased by lowering the nominal pressure inside the tube. The numerical simulations are fully verified by wind-tunnel experimental data of supersonic flows around a blunt body and in a scramjet combustion chamber, as well as by several numerical results in other related studies. The flow around the train capsule is characterized by a compression region in front of the train, a chocked flow near the train, and a complex highly unsteady region behind the train, where expansions waves and reflecting oblique shock waves exist. The total aerodynamic drag and the vacuum degree are found to be linearly related, revealing that lowering the nominal pressure can have a significantly beneficial effect on the aerodynamic performance of the train capsule. The aerodynamic heating due to compressibility effects and the increased pressure are more prominent along the centreline of the tube than on the tube wall. As the vacuum degree increases, the temperature and pressure differences between the front and the tail of the train and the intensity of the reflected shock waves become less significant, so that the extension of the expansion region in the train wake shortens.  相似文献   

2.
In this work simulations using the Large Eddy Simulation technique have been made of the flow around a generic container freight wagon model. The model consists of one 11.8 m standard length container placed on a wagon. Details of the undercarriage such as wheels are included, but the container is generic and smoothed in comparison to a real freight wagon. The Reynolds number of the flow is 105 based on the container width of 2.354 m. Two cases have been considered in the study, one case where the wagon is standing alone and one case where it is submerged into a train set with wagons ahead and behind the wagon. The latter case is simulated using periodic boundary condition. Both the time-averaged and the instantaneous flow around the wagon for the two cases are described. For the single wagon case, it is found that the separation bubble formed on the roof of the container oscillates back and forth in the streamwise direction and that this oscillation is in phase with oscillations found in the upper shear layer of the ring vortex in the wake. The mechanism that is causing the synchronization of the oscillations of the separation bubble at the front and the upper shear layers in the wake is found to be waves of vorticity being shed from the separation bubble. The time-averaged ring vortex in the near wake of the single wagon is found to be inclined due to the disturbance of the undercarriage details on flow in the lower shear layer. The lower center of the ring vortex is located closer to the base face than the upper center. The drag coefficient of the wagon in the periodic case was found to be only 10% of that of the single wagon case. This is due to two symmetrical counter-rotating vortices found in the gaps which make the train set appear as a single body to the oncoming flow and shielding the wagon from any direct impingement of the flow. The counter-rotating vortices in the gap are found to inhibit periodic oscillations in the lateral direction. These oscillations cause vortical structures to form by the air that is pushed out from the gap and these flow structures cause a dominating oscillation of non-dimensional frequency St=0.12 in the side force signal.  相似文献   

3.
4.
The flow induced by a finite disc rotating near horizontal ground is considered, including the effects of an underbody. This paper concentrates on determining the shape of the free layer beyond the rim of the disc which is horizontal in the absence of the underbody and ground but forced to deform to ensure that conditions across the layer are satisfied when the underbody or ground is added. The far-field behaviour, the inviscid flow produced by a nominally infinite disc near the ground and the global solution for small ground clearances are considered analytically, and the full problem is posed as an integral problem. This is then solved numerically and analytically. Results are presented for various heights of the disc above the ground and for discs with an axisymmetric underbody present. A universal form is found for the farfield shape (which is controlled by entrainment into the free layer) but both the underbody and the ground effects are found to increase very significantly for reduced clearances.  相似文献   

5.
Wang  M. Y.  Hashmi  S. A.  Sun  Z. X.  Guo  D. L.  Vita  G.  Yang  G. W.  Hemida  H. 《Acta Mechanica Sinica》2021,37(7):1090-1103
Acta Mechanica Sinica - The irregularities on trains bodies are normally ignored or greatly simplified in studies concerned with aerodynamics. However, surface roughness is known to affect the flow...  相似文献   

6.
This paper deals with the aeroelastic modeling and analysis of a 2-D oscillating airfoil in ground effect, elastically constrained by linear and torsional springs and immersed in an incompressible potential flow (typical section) at a finite distance from the ground. This work aims to extend Theodorsen theory, valid in an unbounded flow domain, to the case of weak ground effect, i.e., for clearances above half the airfoil chord. The key point is the determination of the aerodynamic loads, first in the frequency domain and then in the time domain, accounting for their dependence on the ground distance. The method of images is exploited in order to comply with the impermeability condition on the ground. The new integral equation in the unknown vortex distribution along the chord and the wake is solved using asymptotic expansions in the perturbation parameter defined as the inverse of the non-dimensional ground clearance of the airfoil. The mathematical model describing the aeroelastic system is transformed from the frequency domain into the time domain and then in a pure differential form using a finite-state aerodynamic approximation (augmented states). The typical section, which the developed theory is applied to, is obtained as a reduced model of a wing box finite element representation, thus allowing comparison with the corresponding aeroelastic analysis carried out by a commercial solver based on a 3-D lifting surface aerodynamic model. Stability (flutter margins) and response of the airfoil both in frequency and time domains are then investigated. In particular, within the developed theory, the solution of the Wagner problem can be directly achieved confirming an asymptotic trend of the aerodynamic coefficients toward the steady-state conditions different from that relative to the unbounded domain case. The dependence of flutter speed and the frequency response functions on ground clearance is highlighted, showing the usefulness of this approach in efficiently and robustly accounting for the presence of the ground when unsteady analysis of elastic lifting surfaces in weak ground effect is required.  相似文献   

7.
The three-dimensional dynamics of a pair of counter-rotating streamwise vortices that are present in the wake of an ICE3 high-speed train typical of modern, streamlined vehicles in operation, is investigated in a 1/10th-scale wind-tunnel experiment. Velocity mapping, frequency analysis, phase-averaging and proper orthogonal decomposition of data from high-frequency multi-hole dynamic pressure probes, two-dimensional total pressure arrays and one-dimensional multi-hole arrays was performed. Sinusoidal, antisymmetric motion of the pair of counter-rotating streamwise vortices in the wake is observed. These unsteady characteristics are proposed to be representative of full-scale operational high-speed trains, in spite of the experimental limitations: static floor, reduced model length and reduced Reynolds number. This conclusion is drawn from favourable comparisons with numerical literature, and the ability of the identified characteristics to explain phenomena established in full-scale and scaled moving-model experiments.  相似文献   

8.
9.
基于Fluent与Simpack的高速列车流固耦合联合仿真   总被引:1,自引:0,他引:1  
基于列车系统动力学和高速列车空气动力学建立了高速列车流固耦合联合仿真计算方法。利用Fluent和Simpack分别计算高速列车气动特性和气动作用下的高速列车动力学性能,通过实时传递气动参数和姿态参数,实现高速列车流固耦合的联合仿真。利用建立的流固耦合方法研究了横风速度为10.7m/s时高速列车以350km/h速度运行时的流固耦合动力学行为。比较了离线仿真和联合仿真两种方法下列车气动力与姿态、安全性和舒适性指标的差异。研究表明,列车一气流的流固耦合效应对头车气动力和姿态的影响显著,头车安全性指标有所恶化。  相似文献   

10.
The unsteady wake of a high-speed train is investigated experimentally. From a practical point of view, the wake region is of considerable importance as it is where slipstream velocities—velocities induced by the vehicles movement through air—are largest. In turn, this can create a considerable risk for passengers and track-side workers as the train passes. The flow is quantified in a 1:10 scale wind-tunnel experiment using high-frequency 4-hole dynamic pressure cobra probes, surface-pressure measurements and flow visualisation. The dominant feature of the time-average wake topology consists of a clearly identifiable counter-rotating streamwise vortex pair. Although the wake structure and evolution should perhaps be considered as a whole, the near wake exhibits periodic unsteadiness, at a Strouhal number of 0.2, that could be attributed to periodic shedding from the sides and to a lesser extent the top surface. This periodicity feeds into the trailing vortices, consistent with lateral and vertical displacement of the cores as they advect downstream and thus affecting maximum slipstream velocities.  相似文献   

11.
考虑地面效应的高速列车远场气动噪声计算方法研究   总被引:1,自引:0,他引:1  
为研究高速列车远场气动噪声的计算方法,根据高速列车近地面运行的实际情况,利用半自由空间的Green函数求解FW-H方程;建立考虑地面效应时的远场声学积分公式,并研究地面效应对高速列车远场气动噪声的影响.研究表明,由于存在地面效应,原来的自由声场变成了相当于真实列车声场与镜像列车声场的叠加,并且作用在镜像列车上的力源和法向运动速度与真实列车上的相同.当列车运动速度为350 km/h时,不考虑地面效应时,远场测点的等效连续A计权声压级的最大值为90.76 dB;考虑地面效应之后,远场测点的等效连续A计权声压级的最大值为94.72 dB.  相似文献   

12.
Formulas for all the components of the aerodynamic drag (total, friction, inductive, wave, pressure, and heat-transfer) are uniformly derived as applied to flows governed by the Navier-Stokes and Reynolds equations. For flows of this type the definition of the aerodynamic drag components is refined and the physical basis of the chosen method of breaking up the total drag into components is discussed. Ways of calculating the aerodynamic drag components using the methods of computational aerodynamics are considered. On the basis of the refined formulas the drag components are calculated for flows around airfoils and a high-aspect-ratio wing in transonic flow.  相似文献   

13.
The development of a computer program to solve the axisymmetric full Navier--Stokes equations with k-ε two-equation model of turbulence using various total variation diminishing (TVD) schemes is the primary interest of this study. The computations are performed for the turbulent, transonic, viscous flow over a projectile with/without supporting sting at zero angle of attack. The predicted results, as well as the convergence characteristics, by various TVD schemes are compared with each other. The results show that the TVD schemes of higher-order accuracy do have influence on the regions of high gradients such as shock, base corner and base flow. However, the schemes of third-order accuracy do not necessarily improve the agreement with measured data (which is not available on the base) than that of second-order accuracy, but surely generate apparent different result of base flow. The supporting sting on the projectile base will complicate the base flow and the existence of the sting will slightly shift the shock location and slightly change the flow field after the shock. More iteration steps are needed to get the converged results in the computation for the projectile with sting.  相似文献   

14.
The aeroelastic behavior of a flexible plate subjected to a uniform axial flow is investigated in the presence of a rigid plane set parallel to the plate. It is shown that the ground effect reduces the flutter inflow velocity and strengthens the possibility of using the flag for extracting energy from winds and currents. The numerical analysis is carried out assuming that both the unsteady potential incompressible flow and the plate can be described with 2D models, i.e., a lumped vortex panel method and a nonlinear Euler–Bernoulli beam model, respectively, without losing the essential features of the fluid–structure interaction. Asymmetry of post-critical behavior (limit-cycle oscillations) and sensitivity of the results to the main flag parameters (distance from the ground, mass ratio and damping) are also considered, including also the energy distribution over the identified proper orthogonal modes. The investigated reduction of the flutter velocity in ground effect has been also confirmed with experimental tests relative to a polypropylene flag with and without the rigid panel mimicking the presence of the ground.  相似文献   

15.
Results of solutions to the equations governing the clearance of smoke in laminar and in turbulent flow from a single rectilinear room are presented fof five different vent arrangements. These results show that the average smoke concentration in the room decreases in an approximately exponential manner with time at a rate that depdends much more on room geometry (vent positions in the present case) than on whether the flow is laminar or turbulent. The benefit of this observation is that, provided the clearance air jet is disrupted by impingement on a solid surface within the room, the analysis of smoke movement can for many practical purposes be limited to consideration of laminar flow only. An exceptional case is when the jet is allowed to take a straight line path between the inlet and outlet vents. Here in the absence of the large scale eddies caused by jet impingement, the smaller scale eddies of turbulent flow become relatively important as a mixing mechanism and give higher clearance rates than in laminar flow. Even so, this type of geometry is best avoided. The appearance of the jet is shown in a graphic presentation of the numerical results for laminar flow.  相似文献   

16.
列车荷载作用下轨道和地基的动响应分析   总被引:15,自引:0,他引:15  
边学成  陈云敏 《力学学报》2005,37(4):477-484
分析了列车运动荷载引起的应力波在轨道结构和周围地基中的传播,用动力子结构方法求解了铁路轨道和多层地基的相互作用问题,特别是在模型中考虑了轨枕离散支撑的作用.研究的对象结构包括列车运动荷载和受轨枕支撑的钢轨,以及下面的无限分层黏弹性地基.通过傅里叶变换求解微分形式的支配方程,得到了在频域和波数领域中的钢轨以及周围地基的振动准解析解,而响应时程则通过傅里叶逆变换得到.利用结果可以评估高速铁路列车运行时产生的轨道与周围地基的振动强度;同时提出了一种直观的方法来确定轨道与地基中产生共振时列车运行的临界速度.  相似文献   

17.
The induced airflow from passing trains, which is recognized as train wind, usually has adverse impacts on people in the surroundings, i.e., the aerodynamic forces generated by a high-speed train’s wind may act on the human body and endanger the safety of pedestrians or roadside workers. In this paper, an improved delayed detached eddy simulation (IDDES) method is used to study train wind. The effects of the affiliated components and train length on train wind are analyzed. The results indicate that the affiliated components and train length have no effect on train wind in the area in front of the leading nose. In the downstream and wake regions, the longitudinal train wind becomes stronger as the length of the train increases, while the transverse train wind is not affected. The presence of affiliated components strengthens the train wind in the near field of the train because of strong flow solid interactions but has limited effects on train wind in the far field.  相似文献   

18.
This investigation presents detailed experimental measurements of an active tip-clearance control method based on tip injection in a high-turning axial turbine cascade. Besides that, numerical investigations are also conducted to study phenomena which are not easily measured in the experiments. It aims to study the influence of tip injection on tip clearance flow, with emphasis on the effects of injection locations. Detailed flow field measurements were made downstream of the cascade using a three-hole probe. Static pressure distributions were also measured on the blade surface at 50% and 97.5% span, respectively. The results suggest that tip injection can weaken tip clearance flow, reducing the tip clearance mass flow and its associated losses. Meanwhile, the heat transfer condition on the blade tip surface can be also improved significantly. It also can be found that injection chordwise location plays an important role in the redistribution of secondary flow within the cascade passage. When the same number of injection holes and injection mass flow are applied, holes located in the aft part of blade can perform much better than that in the front part.  相似文献   

19.
20.
Flow-induced fluctuating lift (CLf) and drag (CDf) forces and Strouhal numbers (St) of a cylinder submerged in the wake of another cylinder are investigated experimentally for Reynolds number (Re)=9.7×103–6.5×104. The spacing ratio L (=L/D) between the cylinders is varied from 1.1 to 4.5, where L is the spacing between the cylinders and D is the cylinder diameter. The results show that CLf, CDf and St are highly sensitive to Re due to change in the inherent nature of the flow structure. How the flow structure is dependent on Re and L is presented in a flow structure map. Zdravkovich and Pridden (1977) observed a ‘kink’ in time-mean drag distribution at L≈2.5 for Re>3.1×104, but not for Re≤3.1×104. The physics is provided here behind the presence and absence of the ‘kink’ that was left unexplained since then.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号