首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We investigate a meshless method for the accurate and non-oscillatory solution of problems associated with two-dimensional Helmholtz-type equations in the presence of boundary singularities. The governing equation and boundary conditions are approximated by the method of fundamental solutions (MFS). It is well known that the existence of boundary singularities affects adversely the accuracy and convergence of standard numerical methods. The solutions to such problems and/or their corresponding derivatives may have unbounded values in the vicinity of the singularity. This difficulty is overcome by subtracting from the original MFS solution the corresponding singular functions, without an appreciable increase in the computational effort and at the same time keeping the same MFS approximation. Four examples for both the Helmholtz and the modified Helmholtz equations are carefully investigated and the numerical results presented show an excellent performance of the approach developed.  相似文献   

2.
In this paper, a new meshless method, Chebyshev tau matrix method (CTMM) is researched. The matrix representations for the differentiation and multiplication of Chebyshev expansions make CTMM easy to implement. Problems with curve boundary can be efficiently treated by CTMM. Poisson-type problems, including standard Poisson problems, Helmholtz problems, problems with variable coefficients and nonlinear problems are computed. Some numerical experiments are implemented to verify the efficiency of CTMM, and numerical results are in good agreement with the analytical one. It appears that CTMM is very effective for Poisson-type problems in irregular domains.  相似文献   

3.
Some meshless methods have been applied to the numerical solution of boundary value problems involving the Helmholtz equation. In this work, we focus on the method of fundamental solutions and the plane waves method. It is well known that these methods can be highly accurate assuming smoothness of the domains and the boundary data. However, the matrices involved are often ill-conditioned and the effect of this ill-conditioning may drastically reduce the accuracy. In this work, we propose a numerical algorithm to reduce the ill-conditioning in both methods. The idea is to perform a suitable change of basis. This allows to obtain new basis functions that span exactly the same space as the original meshless method, but are much better conditioned. In the case of circular domains, this technique allows to obtain errors close to machine precision, with condition numbers of order O(1), independently of the number of basis functions in the expansion.  相似文献   

4.
We consider the numerical solution of the Helmholtz equation in domains with one infinite cylindrical waveguide. Such problems exhibit wavenumbers on different scales in the vicinity of cut-off frequencies. This leads to performance issues for non-modal methods like the perfectly matched layer or the Hardy space infinite element method. To improve the latter, we propose a two scale Hardy space infinite element method which can be optimized for wavenumbers on two different scales. It is a tensor product Galerkin method and fits into existing analysis. Up to arbitrary small thresholds it converges exponentially with respect to the number of longitudinal unknowns in the waveguide. Numerical experiments support the theoretical error bounds.  相似文献   

5.
In this paper, an inverse geometric problem for the modified Helmholtz equation arising in heat conduction in a fin is considered. This problem which consists of determining an unknown inner boundary of an annular domain and possibly its surface heat transfer coefficient from one or two pairs of boundary Cauchy data (boundary temperature and heat flux) is solved numerically using the meshless method of fundamental solutions (MFS). A nonlinear unconstrained minimisation of the objective function is regularised when noise is added to the input boundary data. The stability of the numerical results is investigated for several test examples with respect to noise in the input data and various values of the regularisation parameters.  相似文献   

6.
The paper presents a Galerkin numerical method for solving the hyper-singular boundary integral equations for the exterior Helmholtz problem in three dimensions with a Neumann's boundary condition. Previous work in the topic has often dealt with the collocation method with a piecewise constant approximation because high order collocation and Galerkin methods are not available due to the presence of a hypersingular integral operator. This paper proposes a high order Galerkin method by using singularity subtraction technique to reduce the hyper-singular operator to a weakly singular one. Moreover, we show here how to extend the previous work (J. Appl. Numer. Math. 36 (4) (2001) 475–489) on sparse preconditioners to the Galerkin case leading to fast convergence of two iterative solvers: the conjugate gradient normal method and the generalised minimal residual method. A comparison with the collocation method is also presented for the Helmholtz problem with several wavenumbers.  相似文献   

7.
This study makes the first attempt to apply the boundary knot method (BKM), a meshless collocation method, to the solution of linear elliptic problems with discontinuous coefficients, also known as the elliptic interface problems. The additional jump conditions are usually required to be prescribed at the interface which is used to maintain the well‐posedness of the considered problem. To solve the problem efficiently, the original governing equation is first transformed into an equivalent inhomogeneous modified Helmholtz equation in the present numerical formulation. Then the computational domain is divided into several subdomains, and the solution on each subdomain is approximated using the BKM approach. Unlike the conventional two‐step BKM, this study presents a one‐step BKM formulation which possesses merely one influence matrix for inhomogeneous problems. Several benchmark examples with various discontinuous coefficients have been tested to demonstrate the accuracy and efficiency of the present BKM scheme. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1509–1534, 2016  相似文献   

8.
This paper proposes a meshless method based on coupling the method of fundamental solutions (MFS) with quasi-interpolation for the solution of nonhomogeneous polyharmonic problems. The original problems are transformed to homogeneous problems by subtracting a particular solution of the governing differential equation. The particular solution is approximated by quasi-interpolation and the corresponding homogeneous problem is solved using the MFS. By applying quasi-interpolation, problems connected with interpolation can be avoided. The error analysis and convergence study of this meshless method are given for solving the boundary value problems of nonhomogeneous harmonic and biharmonic equations. Numerical examples are also presented to show the efficiency of the method.  相似文献   

9.
A meshless method of dual reciprocity hybrid radial boundary node method (DHRBNM) for the analysis of arbitrary Kirchhoff plates is presented, which combines the advantageous properties of meshless method, radial point interpolation method (RPIM) and BEM. The solution in present method comprises two parts, i.e., the complementary solution and the particular solution. The complementary solution is solved by hybrid radial boundary node method (HRBNM), in which a three-field interpolation scheme is employed, and the boundary variables are approximated by RPIM, which is applied instead of moving least square (MLS) and obtains the Kronecker’s delta property where the traditional HBNM does not satisfy. The internal variables are interpolated by two groups of symmetric fundamental solutions. Based on those, a hybrid displacement variational principle for Kirchhoff plates is developed, and a meshless method of HRBNM for solving biharmonic problems is obtained, by which the complementary solution can be solved.  相似文献   

10.
重构核插值法是近年来提出的一种新型无网格方法.该方法的形函数具有点插值性和高阶光滑性,不仅能够直接施加本质边界条件,而且能保证较高的计算精度.为了更有效地求解三维轴对称弹性动力学问题,对重构核插值法(reproducing kernel interpolation method, RKIM)应用于此类问题进行了研究,并发展了相应的数值模拟方法.由于几何形状和边界条件的轴对称性,计算时只需要横截面上离散节点的信息,因而前处理变得简单.采用Newmark-β法进行了时域积分.数值算例表明,轴对称弹性动力学分析的重构核插值法既有无网格方法的优势,又有较高的计算精度.  相似文献   

11.
In this article we describe a numerical method to solve a nonhomogeneous diffusion equation with arbitrary geometry by combining the method of fundamental solutions (MFS), the method of particular solutions (MPS), and the eigenfunction expansion method (EEM). This forms a meshless numerical scheme of the MFS‐MPS‐EEM model to solve nonhomogeneous diffusion equations with time‐independent source terms and boundary conditions for any time and any shape. Nonhomogeneous diffusion equation with complex domain can be separated into a Poisson equation and a homogeneous diffusion equation using this model. The Poisson equation is solved by the MFS‐MPS model, in which the compactly supported radial basis functions are adopted for the MPS. On the other hand, utilizing the EEM the diffusion equation is first translated to a Helmholtz equation, which is then solved by the MFS together with the technique of the singular value decomposition (SVD). Since the present meshless method does not need mesh generation, nodal connectivity, or numerical integration, the computational effort and memory storage required are minimal as compared with other numerical schemes. Test results for two 2D diffusion problems show good comparability with the analytical solutions. The proposed algorithm is then extended to solve a problem with irregular domain and the results compare very well with solutions of a finite element scheme. Therefore, the present scheme has been proved to be very promising as a meshfree numerical method to solve nonhomogeneous diffusion equations with time‐independent source terms of any time frame, and for any arbitrary geometry. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

12.
正则化无网格法(regularized meshless method, RMM)是一种新的边界型无网格数值离散方法.该方法克服了近年来引起广泛关注的基本解方法(method of fundamental solutions, MFS)的虚假边界缺陷,继承了其无网格、无数值积分、易实施等优点.另一方面,RMM方法同MFS方法的插值方程都涉及非对称稠密系数矩阵,运用常规代数方程的迭代法求解时都要求O(N2)量级的乘法计算量和存储量.随着问题自由度的增加,该方法的计算量增加极快,效率较低,一般难以计算大规模问题.为了克服这个缺点,利用对角形式的快速多级算法(fast multipole method, FMM)来加速RMM方法,发展了快速多级正则化无网格法(fast multipole regularized mesheless method, FM-RMM).该方法无需数值积分并且具有O(N)量级的计算量和存储量,可有效地求解大规模工程问题.数值算例表明,FM-RMM算法可成功在内存为4GB的Core(TM)Ⅱ台式机上求解高达百万级自由度的三维位势问题.  相似文献   

13.
There has been considerable attention given in recent years to the problem of extending finite and boundary element-based analysis of Helmholtz problems to higher frequencies. One approach is the Partition of Unity Method, which has been applied successfully to boundary integral solutions of Helmholtz problems, providing significant accuracy benefits while simultaneously reducing the required number of degrees of freedom for a given accuracy. These benefits accrue at the cost of the requirement to perform some numerically intensive calculations in order to evaluate boundary integrals of highly oscillatory functions. In this paper we adapt the numerical steepest descent method to evaluate these integrals for two-dimensional problems. The approach is successful in reducing the computational effort for most integrals encountered. The paper includes some numerical features that are important for successful practical implementation of the algorithm.  相似文献   

14.
We consider the numerical solution of certain elliptic boundary value problems in disks and annuli using the Trefftz collocation method. In particular we examine boundary value problems for the Laplace, Helmholtz, modified Helmholtz and biharmonic equations in such domains. It is shown that this approach leads to systems in which the matrices possess specific structures. By exploiting these structures we propose efficient algorithms for the solution of the systems. The proposed algorithms are applied to standard test problems.  相似文献   

15.
This paper presents an integral formulation for Helmholtz problems with mixed boundary conditions. Unlike most integral equation techniques for mixed boundary value problems, the proposed method uses a global boundary charge density. As a result, Calderón identities can be utilized to avoid the use of hypersingular integral operators. Numerical results illustrate the performance of the proposed solution technique.  相似文献   

16.
This paper deals with the coupled procedure of the boundary element method (BEM) and the finite element method (FEM) for the exterior boundary value problems for the Helmholtz equation. A circle is selected as the common boundary on which the integral equation is set up with Fourier expansion. As a result, the exterior problems are transformed into nonlocal boundary value problems in a bounded domain which is treated with FEM, and the normal derivative of the unknown function at the common boundary does not appear. The solvability of the variational equation and the error estimate are also discussed.

  相似文献   


17.
关于薄板的无网格局部边界积分方程方法中的友解   总被引:3,自引:1,他引:2  
无网格局部边界积分方程方法是最近发展起来的一种新的数值方法,这种方法综合了伽辽金有限元、边界元和无单元伽辽金法的优点,是一种具有广阔应用前景的、真正的无网格方法.把无网格局部边界积分方程方法应用于求解薄板问题,给出了薄板无网格局部边界积分方程方法所需要的友解及其全部公式.  相似文献   

18.
基本解是边界元法、基本解法和无网格法等数值方法的重要理论基础.在断裂问题中,采用含裂纹的基本解可以避免将裂纹表面作为边界条件,从而大大简化问题的求解.在复变函数表示的含裂纹平面问题Erdogan基本解的基础上,对Erdogan基本解的使用条件进行了注解,修正了Erdogan基本解的一些错误,并推导出Erdogan基本解中位移函数解答的显式表达形式.编写了基于Erdogan基本解显式表达的样条虚边界元法(spline fictitious boundary element method, SFBEM)计算程序,计算了具有复合边界条件平面问题的位移、应力和应力强度因子.数值算例结果表明了该文提出的Erdogan基本解显式表达形式的正确性.  相似文献   

19.
This paper presents a meshless method, which replaces the inhomogeneous biharmonic equation by two Poisson equations in terms of an intermediate function. The solution of the Poisson equation with the intermediate function as the right-hand term may be written as a sum of a particular solution and a homogeneous solution of a Laplace equation. The intermediate function is approximated by a series of radial basis functions. Then the particular solution is obtained via employing Kansa’s method, while the homogeneous solution is approximated by using the boundary radial point interpolation method by means of boundary integral equations. Besides, the proposed meshless method, in conjunction with the analog equation method, is further developed for solving generalized biharmonic-type problems. Some numerical tests illustrate the efficiency of the method proposed.  相似文献   

20.
We construct a method for computing an approximate solution of the boundary integral equation of the first kind corresponding to the Dirichlet boundary value problems for the Helmholtz equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号