首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first enantioselective construction of a new class of axially chiral naphthyl‐indole skeletons has been established by organocatalytic asymmetric coupling reactions of 2‐naphthols with 2‐indolylmethanols (up to 99 % yield, 97:3 e.r.). This approach not only affords a new type of axially chiral heterobiaryl backbone, but also provides a new catalytic enantioselective strategy for constructing axially chiral biaryl scaffolds by making use of the C3‐electrophilicity of 2‐indolylmethanols.  相似文献   

2.
[reaction: see text] We have established an enantioselective synthesis of both C2 symmetric and unsymmetric tetra-ortho-substituted axially chiral biaryls through rhodium-catalyzed double [2 + 2 + 2] cycloaddition (up to >99% ee). This method serves as an attractive new route to enantioenriched tetra-ortho-substituted axially chiral biaryls in view of the one-step access to substrate diynes and tetraynes starting from readily available alkynes.  相似文献   

3.
Although asymmetric C−H functionalization has been available for the synthesis of structurally diverse molecules, catalytic dynamic kinetic resolution (DKR) approaches to change racemic stereogenic axes remain synthetic challenges in this field. Here, a concise palladium-catalyzed DKR was combined with C−H functionalization involving olefination and alkynylation for the highly efficient synthesis of non-biaryl-atropisomer-type (NBA) axially chiral oragnosilanes. The chemistry proceeded through two different and distinct DKR: first, an atroposelective C−H olefination or alkynylation produced axially chiral vinylsilanes or alkynylsilanes as a new family of non-biaryl atropisomers (NBA), and second, the extension of this DKR strategy to twofold o,o′-C−H functionalization led to the multifunctional axially chiral organosilicon compounds with up to >99 % ee.  相似文献   

4.
The atroposelective synthesis of axially chiral styrenes remains a formidable challenge due to their relatively lower rotational barriers compared to the biaryl atropoisomers. Herein, we describe the construction of axially chiral styrenes through PdII-catalyzed atroposelective C−H olefination, using a bulky amino amide as a transient chiral auxiliary. Various axially chiral styrenes were produced with good yields and high enantioselectivity (up to 95 % yield and 99 % ee). Carboxylic acid derivatives of the resulting axially chiral styrenes showed superior enantiocontrol over the biaryl counterparts in CoIII-catalyzed enantioselective C(sp3)−H amidation of thioamide. Mechanistic studies suggest that C−H cleavage is the enantioselectivity-determining step.  相似文献   

5.
A new family of chelation-induced axially chiral palladium complexes by using biphenyl ligands 2 with four identical chiral oxazoline groups at four ortho positions has been developed. Although there is no axial chirality in ligands 2 due to the molecular symmetry, when they chelated with one or two palladium ions, the axial chirality could be induced by destroying the molecular symmetry. Significantly, only one diastereomeric metal complex with (S)-axial configuration was produced during the chelation-induced process. The chelation-induced axially chiral catalytic system, 2c-Pd(CF3COO)2 (1:1 molar ratio), showed excellent catalytic activities and enantioselectivities in the Wacker-type cyclization of allylphenols with up to 99% ee.  相似文献   

6.
Chiral aldehyde catalysis opens new avenues for the activation of simple amines. However, the lack of easy access to structurally diverse chiral aldehyde catalysts has hampered the development of this cutting‐edge field. Herein, we report a Pd‐catalyzed atroposelective C?H naphthylation with 7‐oxabenzonorbornadienes for the preparation of axially chiral biaryls with excellent enantioselectivities (up to >99 % ee). This reaction is scalable and robust, which serves as a key step to provide a rapid access to axially chiral aldehyde catalysts through a three‐step C?H functionalization sequence. These chiral aldehydes exhibit better activities and enantioselectivities than the previously reported organocatalysts in the asymmetric activation of glycine derived amides and dipeptides. Moreover, preliminary investigation also discloses that the aldehyde catalyst can effectively override the intrinsic facial selectivity of chiral dipeptide substrates, showcasing the strong chiral induction ability of this type of novel aldehyde catalysts.  相似文献   

7.
The first enantioselective Satoh–Miura‐type reaction is reported. A variety of C?N axially chiral N‐aryloxindoles have been enantioselectively synthesized by an asymmetric rhodium‐catalyzed dual C?H activation reaction of N‐aryloxindoles and alkynes. High yields and enantioselectivities were obtained (up to 99 % yield and up to 99 % ee). To date, it is also the first example of the asymmetric synthesis of C?N axially chiral compounds by such a C?H activation strategy.  相似文献   

8.
The atroposelective synthesis of axially chiral styrenes remains a formidable challenge due to their relatively lower rotational barriers compared to the biaryl atropoisomers. Herein, we describe the construction of axially chiral styrenes through PdII‐catalyzed atroposelective C?H olefination, using a bulky amino amide as a transient chiral auxiliary. Various axially chiral styrenes were produced with good yields and high enantioselectivity (up to 95 % yield and 99 % ee). Carboxylic acid derivatives of the resulting axially chiral styrenes showed superior enantiocontrol over the biaryl counterparts in CoIII‐catalyzed enantioselective C(sp3)?H amidation of thioamide. Mechanistic studies suggest that C?H cleavage is the enantioselectivity‐determining step.  相似文献   

9.
Catalytic enantioselective intermolecular C−H silylation offers an efficient approach for the rapid construction of chiral organosilicon compounds, but remains a significant challenge. Herein, a new type of chiral silyl ligand is developed, which enables the first iridium-catalyzed atroposelective intermolecular C−H silylation reaction of 2-arylisoquinolines. This protocol features mild reaction conditions, high atom economy, and remarkable yield with excellent stereoselectivity (up to 99 % yield, 99 % ee), delivering enantioenriched axially chiral silane platform molecules with facile convertibility. Key to the success of this unprecedented transformation relies on a novel chiral PSiSi-ligand, which facilitates the intermolecular C−H silylation process with perfect chem-, regio- and stereo-control via a multi-coordinated silyl iridium complex.  相似文献   

10.
The first catalytic asymmetric construction of 3,3′‐bisindole skeletons bearing both axial and central chirality has been established by organocatalytic asymmetric addition reactions of 2‐substituted 3,3′‐bisindoles with 3‐indolylmethanols (up to 98 % yield, all >95:5 d.r., >99 % ee). This reaction also represents the first highly enantioselective construction of axially chiral 3,3′‐bisindole skeletons, and utilizes the strategy of introducing a bulky group to the ortho‐position of prochiral 3,3′‐bisindoles. This reaction not only provides a good example for simultaneously controlling axial and central chirality in one operation, but also serves as a new strategy for catalytic enantioselective construction of axially chiral 3,3′‐bisindole backbones from prochiral substrates.  相似文献   

11.
Enolate chemistry has been extensively used for stereoselective C-C bond formation, in which metal amide bases are frequently employed in strictly anhydrous solvents at low temperatures. However, we found that asymmetric intramolecular C-C bond formation via axially chiral enolate intermediates proceeded in up to 99% ee at 20 degrees C using powdered KOH in dry or wet DMSO as a base. The enantioselectivity was even higher than that of the corresponding reactions with potassium hexamethyldisilazide in DMF at -60 degrees C. The racemization barrier of the axially chiral enolate intermediate was estimated to be approximately 15.5 kcal/mol. On the basis of the barrier, the chiral enolate intermediate was supposed to undergo cyclization within approximately 10(-3) sec at 20 degrees C after it is generated to give the product in >or=99% ee. Thus, enolates generated with powdered KOH in DMSO were expected to be extremely reactive.  相似文献   

12.
A new axially chiral phosphine-sulfonamide ligand was prepared via a chiral component (R)-2-amino-2′-diphenylphosphinyl-1,1′-binaphthyl, which was conveniently synthesized through a new route involving hydrolysis of (R)-2-cyano-2′-phosphinyl-1,1′-binaphthyl followed by Hofmann rearrangement of the amide group. The new ligand was found to be very efficient in copper-catalyzed enantioselective conjugate addition of diethylzinc to acyclic enones such as benzylideneacetones, providing very high enantioselectivity up to 99% ee.  相似文献   

13.
A new approach for atropselective preparation of axially chiral biaryl was developed. This process proceeded through a chirality transfer from a stereogenic center of a secondary alcohol to the stereogenic axis via regioselective intramolecular silyl group migration. This methodology allowed for the preparation of a single atropisomer 2 in good yield (85%) with high diastereoselectivity (99:1), which subsequently led to the successful development of an efficient asymmetric synthesis of A-240610.0, 1.  相似文献   

14.
This study establishes the first organocatalytic enantioselective synthesis of axially chiral N,N′-bisindoles via chiral phosphoric acid-catalyzed formal (3+2) cycloadditions of indole-based enaminones as novel platform molecules with 2,3-diketoesters, where de novo indole-ring formation is involved. Using this new strategy, various axially chiral N,N′-bisindoles were synthesized in good yields and with excellent enantioselectivities (up to 87 % yield and 96 % ee). More importantly, this class of axially chiral N,N′-bisindoles exhibited some degree of cytotoxicity toward cancer cells and was derived into axially chiral phosphine ligands with high catalytic activity. This study provides a new strategy for enantioselective synthesis of axially chiral N,N′-bisindoles using asymmetric organocatalysis and is the first to realize the applications of such scaffolds in medicinal chemistry and asymmetric catalysis.  相似文献   

15.
A novel method by a one-step introduction of axial chirality and sterically hindered group has been developed for facile synthesis of axially chiral styrene-type carboxylic acids. With the palladium-catalyzed C–H arylation and olefination of readily available cinnamic acid established, this transformation demonstrated excellent yield, excellent stereocontrol (up to 99% yield and 99% ee), and broad substrate scope under mild conditions. The axially chiral styrene-type carboxylic acids produced have been successfully applied to Cp*CoIII-catalyzed asymmetric C–H activation reactions, indicating their potential as chiral ligands or catalysts in asymmetric synthesis.

Palladium-catalyzed asymmetric C–H functionalization to yield axially chiral styrene-type carboxylic acids is described, in which axial chirality and sterically hindered group were incorporated in one-step.  相似文献   

16.
A new class of axially chiral aryl‐alkene‐indole frameworks have been designed, and the first catalytic asymmetric construction of such scaffolds has been established by the strategy of organocatalytic (Z/E)‐selective and enantioselective (4+3) cyclization of 3‐alkynyl‐2‐indolylmethanols with 2‐naphthols or phenols (all >95 : 5 E/Z, up to 98% yield, 97% ee). This reaction also represents the first catalytic asymmetric construction of axially chiral alkene‐heteroaryl scaffolds, which will add a new member to the atropisomeric family. This approach has not only confronted the great challenges in constructing axially chiral alkene‐heteroaryl scaffolds but also provided a powerful strategy for the enantioselective construction of axially chiral aryl‐alkene‐indole frameworks.  相似文献   

17.
Palladium complexes with an axially chiral N-Ar framework have been developed. These complexes showed high stereoselectivities in asymmetric allylic arylation to achieve the kinetic resolution of Morita-Baylis-Hillman adducts, affording up to 99% ee of (E)-allylation products and 92% ee of recovered Morita-Baylis-Hillman adducts.  相似文献   

18.
A double axially chiral bisphosphorylimide has been demonstrated to be an efficient and highly sterically hindered Brønsted acid in asymmetric three-component Mannich reactions. Optically active syn-β-amino ketones were obtained in high yields (up to 99%) with excellent diastereoselectivity (99:1) and enantioselectivity (up to 99% ee). A gram-scale reaction was also performed to prove the synthetic application value of this reaction.  相似文献   

19.
Highly efficient synthesis of axially chiral biaryl amines through cobalt-catalyzed atroposelective C−H arylation using easily accessible cobalt(II) salt and salicyloxazoline ligand has been reported. This methodology provides a straightforward and sustainable access to a broad range of enantioenriched biaryl-2-amines in good yields (up to 99 %) with excellent enantioselectivities (up to 99 % ee). The synthetic utility of the unprecedented method is highlighted by its scalability and diverse transformations.  相似文献   

20.
Chirality exchange benzannulation of optically active (1S)-aryl(aryl')-2,2-dichlorocyclopropylmethanols (>99% ee) using TiCl4 successfully proceeded to give axially chiral (M)-alpha-arylnaphthalenes with excellent levels of stereo induction (>99% ee). This unique transformation involves the single-step chirality exchange from sp3 central chirality to axial chirality, that is, a type of excellent memory effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号