首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A new technique for RF transverse excitation of gas laser has been tested: the plasma tube has been put inside a quarter wave strip line RF cavity. Excellent field uniformity and arcing problem avoidance have been observed. The efficiency is greater than 15%. The guidelines for cavity design are discussed. Work partially supported by ENEA-Contract No. C/451 (Dip. Fusione Associazione EURATOM-ENEA, CRE Frascati).  相似文献   

2.
The purpose of this study was to investigate how flow affects slice-selective excitation, particularly for radiofrequency (rf) pulses optimized for slice-selective excitation of stationary material. Simulation methods were used to calculate the slice profiles for material flowing at different velocities, using optimal flow compensation when appropriate. Four rf pulses of very different shapes were used in the simulation study: a 90° linear-phase Shinnar-LeRoux pulse; a 90° self-refocusing pulse; a minimum-phase Shinnar-LeRoux inversion pulse; and a SPINCALC inversion pulse. Slice profiles from simulations with a laminar flow model were compared with experimental studies for two different rf pulses using a clinical magnetic resonance imaging (MRI) system. We found that, for a given rf pulse, the effect of flow on slice-selective excitation depends on the product of the selection gradient amplitude, the component of velocity in the slice selection direction, and the square of the rf pulse duration. The shapes of the slice profiles from the Shinnar-LeRoux pulses were relatively insensitive to velocity. However, the slice profiles from the self-refocusing pulse and the SPINCALC pulse were significantly degraded by velocity. Experimental slice profiles showed excellent agreement with simulation. In conclusion, our study demonstrates that slice-selective excitation can be significantly degraded by flow depending on the velocity, the gradient amplitude, and characteristics of the rf excitation pulse used. The results can aid in the design of rf pulses for slice-selective excitation of flowing material.  相似文献   

3.
Self-gating is investigated to improve the velocity resolution of real-time Fourier velocity encoding measurements in the absence of a reliable electrocardiogram waveform (e.g., fetal magnetic resonance or severe arrhythmia). Real-time flow data are acquired using interleaved k-space trajectories which share a common path near the origin of k-space. These common data provide a rapid self-gating signal that can be used to combine the interleaved data. The combined interleaves cover a greater area of k-space than a single real-time acquisition, thereby providing higher velocity resolution for a given aliasing velocity and temporal resolution. For example, this approach provided velocity spectra with a temporal resolution of 19 ms and velocity resolution of 22 cm/s over an 818 cm/s field-of-view. The method was validated experimentally using a computer-controlled pulsatile flow apparatus and applied in vivo to measure aortic-valve flow in a healthy volunteer.  相似文献   

4.
J Jellins  G Kossoff 《Ultrasonics》1973,11(5):223-226
Present ultrasonic echography techniques measure the time of arrival of echoes and display this as distance, using the assumption that the velocity of propagation in the tissues is constant and equal to that in the water-coupling medium. The average velocity of ultrasound in the breast ranges from 1 430–1 560 m s?1 between patients and this variation is sufficient to degrade the quality of compound scanned echograms. A method of electronic compensation has been developed which compensates for linear displacement, thus improving the resolution and allowing more precise interpretation of the structure of the breast.  相似文献   

5.
6.
7.
Longitudinal RF excitation of CO2 — Lasers at relatively low radio frequencies in the 100 to 200 kHz range permits an efficient AC to RF conversion in the power supply while maintaining all the advantages of RF excited lasers. Existing tube designs for DC excitations can be easily modified, and peripheral circuitry like laser stabilizers remain useable too. Experimental results for a prototype laser are given.  相似文献   

8.
At higher B(0) fields, specific absorption rate (SAR) deposition increases. Due to maximum SAR limitation, slice coverage decreases and/or scan time increases. Conventional selective RF pulses are played out in conjunction with a time independent field gradient. Variable rate selective excitation (VERSE) is a technique that modifies the original RF and gradient waveforms such that slice profile is unchanged. The drawback is that the slice profile for off-resonance spins is distorted. A new VERSE algorithm based on modeling the scaled waveforms as a Fermi function is introduced. It ensures that system related constraints of maximum gradient amplitude and slew rate are not exceeded. The algorithm can be used to preserve the original RF pulse duration while minimizing SAR and peak b1 or to minimize the RF pulse duration. The design is general and can be applied to any symmetrical or asymmetrical RF waveform. The algorithm is demonstrated by using it to (a) minimize the SAR of a linear phase RF pulse, (b) minimize SAR of a hyperbolic secant RF pulse, and (c) minimize the duration of a linear phase RF pulse. Images with a T1-FLAIR (T1 FLuid Attenuated Inversion Recovery) sequence using a conventional and VERSE adiabatic inversion RF pulse are presented. Comparison of images and scan parameters for different anatomies and coils shows increased scan coverage and decreased SAR with the VERSE inversion RF pulse, while image quality is preserved.  相似文献   

9.
Mechanisms in vacuum surface flashover caused by rf (f < 10 GHz) or unipolar voltages are virtually identical. Similarities between rf (representing high-power microwave window breakdown on the high-pressure side) and unipolar surface flashover are expected in an atmospheric environment as well. Two separate experimental setups were utilized to investigate both unipolar flashover and rf window flashover under atmospheric conditions while controlling excitation, temperature, pressure, humidity, and type of gas present, all under a similar electric field-surface geometry. The local electric field at the flashover initiating points has been numerically calculated in detail for all test geometries. For both rf and unipolar pulsed excitation, the flashover dynamics are changed by the application of UV light to the dielectric surface. A UV prepulse has a distinct impact on the arc’s path and a tendency to decrease the hold-off electric field. The effect of humidity on the hold-off electric field for both pulsed unipolar and rf excitations, along with temporally resolved emission spectroscopy of the flashover event, is discussed. This work was funded by the Cathode and HPM Breakdown MURI program and managed by the Air Force Office of Scientific Research (AFOSR) and by Sandia National Laboratories.  相似文献   

10.
11.
We find simple expressions for velocity of massless particles with dependence on the distance, r, in Schwarzschild coordinates. For massive particles these expressions give an upper bound for the velocity. Our results apply to static spherically symmetric metrics. We use these results to calculate the velocity for different cases: Schwarzschild, Schwarzschild-de Sitter and Reissner-Nordström with and without the cosmological constant. We emphasize the differences between the behavior of the velocity in the different metrics and find that in cases with naked singularity there always exists a region where the massless particle moves with a velocity greater than the velocity of light in vacuum. In the case of Reissner-Nordström-de Sitter we completely characterize the velocity and the metric in an algebraic way. We contrast the case of classical naked singularities with naked singularities emerging from metric inspired by noncommutative geometry where the radial velocity never exceeds one. Furthermore, we solve the Einstein equations for a constant and polytropic density profile and calculate the radial velocity of a photon moving in spaces with interior metric. The polytropic case of radial velocity displays an unexpected variation bounded by a local minimum and maximum.  相似文献   

12.
A gradient-echo line scan imaging technique was developed which employs two-dimensional spatially selective radiofrequency (2DRF) pulses for consecutively exciting individual columns of transverse magnetization, i.e., image lines. Although a variety of trajectories are possible for 2DRF excitation, the current implementation involved a blipped-planar trajectory in conjunction with additional saturation RF pulses to suppress side excitations above and below the desired image section, i.e., along the blip direction of the 2DRF pulse. Human brain imaging at 2.0 T (Siemens Vision, Erlangen, Germany) resulted in measuring times of 5.2 s for a 5-mm section at 1.0 x 1.0 mm in-plane resolution. Functional neuroimaging of the motor cortex at 1.2 s temporal resolution and 0.78 x 1.56 mm in-plane resolution exploited the capability of imaging inner volumes (here a 25-mm strip) without signal aliasing.  相似文献   

13.
Small magnetic particles with uniaxial magnetic anisotropy are under investigation. A possible mechanism of amplification of the RF field acting on nuclei in fine magnetic particle systems is described. The calculations are based on the exact solution of the proper Fokker-Planck equation using the matrix continued fractions method. This more general approach expands and reaffirms results first obtained with the discrete orientation approximation.  相似文献   

14.
15.
Coherent optical vortices are generated from ultrashort 6.4 fs pulses. Our results demonstrate angular dispersion compensation of ultrashort 6.4 fs Laguerre-Gaussian (LG) pulses as well as what is believed to be the first direct autocorrelation measurement of 80 fs LG amplified pulses. A reflective-mirror-based 4f-compressor is proposed to compensate the angular and group velocity dispersion of the ultrashort LG pulses.  相似文献   

16.
In this study, a Genetic Algorithm (GA) is introduced to optimize the multidimensional spatial selective RF pulse to reduce the passband and stopband errors of excitation profile while limiting the transition width. This method is also used to diminish the nonlinearity effect of the Bloch equation for large tip angle excitation pulse design. The RF pulse is first designed by the k-space method and then coded into float strings to form an initial population. GA operators are then applied to this population to perform evolution, which is an optimization process. In this process, an evaluation function defined as the sum of the reciprocal of passband and stopband errors is used to assess the fitness value of each individual, so as to find the best individual in current generation. It is possible to optimize the RF pulse after a number of iterations. Simulation results of the Bloch equation show that in a 90 degrees excitation pulse design, compared with the k-space method, a GA-optimized RF pulse can reduce the passband and stopband error by 12% and 3%, respectively, while maintaining the transition width within 2 cm (about 12% of the whole 32 cm FOV). In a 180 degrees inversion pulse design, the passband error can be reduced by 43%, while the transition is also kept at 2 cm in a whole 32 cm FOV.  相似文献   

17.
The application of correlation spectroscopy employing stochastic excitation and the Hadamard transform to time-domain Fourier transform electron paramagnetic resonance (FT-EPR) spectroscopy in the radiofrequency (RF) band is described. An existing, time-domain FT-EPR spectrometer system with a Larmor frequency (L(f)) of 300 MHz was used to develop this technique by incorporating a pseudo-random pulse sequence generator to output the maximum length binary sequence (MLBS, 10- and 11-bit). Software developed to control the EPR system setup, acquire the signals, and post process the data, is outlined. The software incorporates the Hadamard transform algorithm to perform the required cross-correlation of the acquired signal and the MLBS after stochastic excitation. To accommodate the EPR signals, bandwidth extension was accomplished by sampling at a rate many times faster than the RF pulse repetition rate, and subsequent digital signal processing of the data. The results of these experiments showed that there was a decrease in the total acquisition time, and an improved free induction decay (FID) signal-to-noise (S/N) ratio compared to the conventional coherent averaging approach. These techniques have the potential to reduce the RF pulse power to the levels used in continuous wave (CW) EPR while retaining the advantage of time-domain EPR methods. These methods have the potential to facilitate the progression to in vivo FT-EPR imaging of larger volumes.  相似文献   

18.
Stationary response of a travelling system to profile-imposed excitation is investigated. The system is treated as linear and both the profile and traversal velocity of the system are considered to be stationary and Gaussian random functions of horizontal distance. The problem is formulated by means of a differential equation with random coefficients, and detailed analysis of vertical vibrations of the system travelling with small random velocity fluctuations is performed. An analytical expression for response spectral density is obtained in a relatively simple form for a general case, and this is used in calculation of the effect of randomly-varying velocity on a system's response in particular cases relevant to vehicle dynamics.  相似文献   

19.

Purpose

TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2 T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume.

Materials and Methods

A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements.

Results

Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved.

Conclusion

The Maxwell (sine)–Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs.  相似文献   

20.
It is shown that pulsed separated-field excitation provides a useful method for time-of-flight velocity selection of atomic beams. High-resolution nonlinear optical Ramsey fringes generated by one narrow velocity group have been observed at the (3 P 11 S 0) intercombination line of Ca. The corresponding second-order Doppler broadening deduced from the Fourier transform of the fringe signal could be reduced by about one order of magnitude from 3.7 kHz for cw separated field excitation to 0.4 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号