首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical transport measurements of carbon nanotubes filled with magnetic iron nanoparticles are reported. Low-temperature (40 mK) magnetoresistance measurements showed conductance hysteresis with sharp jumps at the switching fields of the nanoparticles. Depending on the gate voltage, positive or negative hysteresis was observed. The results are explained in terms of a magneto-Coulomb effect: The spin flip of the iron island at a nonzero magnetic field causes a shift of the chemical potential induced by the change of Zeeman energy; i.e., an effective charge variation is detected by the nanotube quantum dot.  相似文献   

2.
This study is to report a ZnSe quantum dot with a large two-photon absorption cross section and good biocompatibility,which can be used in bioimaging.Fluorescence emission at 410 nm is observed in the quantum dot under 760-nm laser excitation.These biocompatible quantum dots exhibit a two-photon cross-section of 9.1×10~5 GM(1 GM=10~(-50) cm~4·s/photon).Two-photon excited laser scanning microscopic images show that cells co-cultured with ZnSe quantum dots are found in the blue channel at a fluorescence intensity that is 14.5 times that of control cells not cocultured with quantum dots.After incubating zebrafish larvae with ZnSe quantum dots for 24 h,the fluorescence intensity of the yolk sac stimulated by ultraviolet light is 2.9 times that of the control group.The proposed material shows a great potential application in biological imaging.  相似文献   

3.
Portal vein imaging is an important method for investigating portal venous disorders. However, the diagnostic requirements are not usually satisfied when using single imaging techniques. Diagnostic accuracy can be improved by combining different imaging techniques. Contrast agents that can be used for combined imaging modalities are needed. In this study, the feasibility of using microbubbles containing gadolinium (MCG) as contrast agents for both phase contrast imaging (PCI) and magnetic resonance imaging (MRI) are investigated. MCG were made by encapsulating sulfur hexafluoride (SF6) gas with gadolinium and lyophilized powder. Absorption contrast imaging (ACI) and PCI of MCG were performed and compared in vitro. MCG were injected into the main portal trunk of living rats. PCI and MRI were performed at 2 min and 10 min after MCG injection, respectively. PCI exploited the differences in the refractive index and visibly showed the MCG, which were not detectable by ACI. PCI could facilitate clear revelation of the MCG‐infused portal veins. The diameter of the portal veins could be determined by the largest MCG in the same portal vein. The minimum diameter of clearly detected portal veins was about 300 µm by MRI. These results indicate that MCG could enhance both PCI and MRI for imaging portal veins. The detection sensitivity of PCI and MRI could compensate for each other when using MCG contrast agents for animals.  相似文献   

4.
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.  相似文献   

5.
Spectrally resolved detection of single atom resonance fluorescence in the limit of well-separated spectral lines is considered. By using a special type of correlation measurements over the fluorescent field, in which a filtered photon detection is followed by an unfiltered photon detection, we obtain a conditioned atomic state following the filtered photon detection. The properties of the atomic state following detection of the reflected photon are studied and interpreted on the basis of quantum interference between the dressed states. Measurement operators associated with the detection of the passed and reflected photons are derived and used to construct the master equation for the atomic density matrix subjected to continuous spectral detection, the filter tuning being arbitrary.  相似文献   

6.
Water-soluble CdSe quantum dots (QDs) were synthesized using mercaptosuccinic acid (MSA) as a stabilizer. The growth process and characterization of CdSe quantum dots were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Ultraviolet-visible (UV-vis) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Results demonstrated the MSA-capped CdSe QDs were highly crystalline and possessed good optical properties. Further, the resulting products could be used as fluorescent probes to detect Cu2+ ions in physiological buffer solution. The response was linearly proportional to the concentration of Cu2+ ion in the range 2×10−8- 3.5×10−7 mol L−1 with a detection limit of 3.4 nmol L−1.  相似文献   

7.
The ferromagnetic resonance (FMR) spectra of magnetite nanoparticles in aqueous solutions and solid polymer films were analyzed at different particle concentrations, matrix rigidities, temperatures, external magnetic effects, and positions of flat samples in the field of the spectrometer. The formation of linear aggregates of nanoparticles under the influence of magnetic fields is the major factor that changes the FMR spectrum shape and position. The results were analyzed in terms of phenomenological theory of FMR. The applicability of the equations of phenomenological theory was verified, and the fraction of nanoparticles in linear aggregates was evaluated.  相似文献   

8.
Solutions of manganese chloride were force-fed to Sprague-Dawley rats. Magnetic resonance (MR) imaging was performed on (a) syringes containing different concentrations of manganese chloride, (b) rats after force feeding and (c) livers excised after sacrifice of the force-fed rats. Imaging was done with a 0.15-T resistive magnet. Multiple pulse sequences were used and T1 values were calculated. The signal intensity and T1 value obtained from a solution depended on the manganese concentration and the pulse sequence employed. At higher concentrations, no signal was produced due to extreme T2 shortening. Absorbed manganese affected the signal intensities and T1 values of the rats' livers. By appropriate selection of manganese concentration and pulse sequence, ingested manganese can serve as a combined gastrointestinal and hepatic MR contrast agent.  相似文献   

9.
Magnetite nanoparticles (Chemicell SiMAG-TCL) were characterized by SQUID-relaxometry, susceptometry, and TEM. The magnetization detected by SQUID-relaxometry was 0.33% of that detected by susceptometry, indicating that the sensitivity of SQUID-relaxometry could be significantly increased through improved control of nanoparticle size. The relaxometry data were analyzed by the moment superposition model (MSM) to determine the distribution of nanoparticle moments. Analysis of the binding of CD34-conjugated nanoparticles to U937 leukemia cells revealed 60,000 nanoparticles per cell, which were collected from whole blood using a prototype magnetic biopsy needle, with a capture efficiency of >65% from a 750 μl sample volume in 1 min.  相似文献   

10.
11.
A novel CdTe quantum dots (QDs) based technology platform was established in aqueous solution. It can perform accurate and simple determination of aminophylline concentration in pharmaceutical samples with satisfactory results. Under optimum conditions, the relative fluorescence intensity of CdTe quantum dots is linearly proportional aminophylline concentration from 2.00 to 80.0 μg mL?1 with a correlation coefficient of 0.9979 for aminophylline determination and a detection limit of 0.531 μg mL?1.  相似文献   

12.
A new method for the determination of roxithromycin based on the fluorescence quenching of 3-mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) was developed. In ethanol medium, the fluorescence of CdTe quantum dots at 552 nm was quenched in the presence of roxithromycin. Based on this a simple, sensitive, and selective method for rapid determination of roxithromycin was described. Reaction time, interfering substances on the fluorescence quenching, and mechanism of the interaction of CdTe QDs with roxithromycin were investigated. After optimization, the proposed method allows the determination of roxithromycin over the range 25.0-350.0 μg ml−1. The detection limit is 4.6 μg ml−1. The proposed method was successfully applied to commercial capsules and tablets with satisfactory results. The recovery of the method was in the range of 96.8-102.5%.  相似文献   

13.
It is shown that colloidal semiconductor nanocrystals (quantum dots), which are promising fluorophores for multiphoton fluorescence microscopy, exhibit a two-photon absorption saturation effect at moderate powers (not exceeding 10 mW) of femtosecond pumping radiation. An analytical expression for the power of two-photon fluorescence of quantum dots as a function of the average pumping power is obtained. With this expression, the deviation of the found dependence from the quadratic law is explained by two factors, i.e., a large two-photon absorption cross section of quantum dots and their slow (compared to the typical pumping pulse-repetition period) relaxation to an unexcited state. Using an LSM 510 Carl Zeiss laser scanning microscope equipped with a Ti:Sa tunable femtosecond laser, a series of model experiments is performed to reveal the saturation effect in a solution of commercially available quantum dots. Good agreement is obtained between the measured dependence of the power of two-photon fluorescence on the average pump power and the theoretical calculation results. It is also experimentally demonstrated that, under fluorescence saturation conditions, the spatial resolution of the method of multiphoton fluorescence microscopy is lost; this effect is analyzed numerically.  相似文献   

14.
A new sensor principle for detection of patient movement in magnetic resonance imaging has been successfully applied for the reduction of motion artifacts. It uses a device that is already present in every MRI system, namely the rf coil. Patient movement within the coil causes changes in the rf impedance match of the coil, which can be measured as variations in the reflected rf power. The principle used for the detection of respiratory and cardiac motion is described, and experimental results measured with several coil arrangements are given. Images are presented which were acquired with respiratory gating derived from the rf body coil of a 2 Tesla whole body MRI system.  相似文献   

15.
A dual imaging approach, combining magnetic resonance imaging to localize lesions and synchrotron rapid scanning X-ray fluorescence (XRF) mapping to localize and quantify calcium, iron and zinc was used to examine one case of recent stroke with hemorrhage and two cases of ischemia 3 and 7 years before death with the latter showing superficial necrosis. In hemorrhagic lesions, more Fe is found accompanied with less Zn. In chronic ischemic lesions, Fe, Zn and Ca are lower indicating that these elements are removed as the normal tissue dies and scar tissue forms. Both susceptibility and T2* maps were calculated to visualize iron in hemorrhages and validated by XRF Ca and Fe maps. The former was superior for imaging iron in hemorrhagic transformation and necrosis but did not capture ischemic lesions. In contrast, T2* could not differentiate Ca from Fe in necrotic tissue but did capture ischemic lesions, complementing the susceptibility mapping. The spatial localization, accurate quantitative data and elemental differentiation shown here could also be valuable for imaging other brain tissue damage with abnormal Ca and Fe content.  相似文献   

16.
Quantum crystallization of electrons in a quantum dot (QD) subjected to an external magnetic field is considered. Two-electron QDs with two-dimensional (2D) parabolic confining potential in an external transverse magnetic field are calculated. The Hamiltonian is numerically diagonalized in the basis of one-particle functions to find the energy spectra and wave functions for the relative motion of electrons with inclusion of electron-electron interaction for a broad range of the confining-potential steepness (α) and external magnetic fields (B). The region of the external parameters (α, B) within which a gradual transition to quantum crystalline order occurs is numerically determined. In contrast to a 2D unbounded system, a magnetic field acts nonmonotonically on “crystallization” in a quantum dot with several electrons because of a competition between two effects taking place with increasing B, namely, decreasing spread of the electron wave functions and increasing effective steepness of the confining potential, which reduces the average separation between electrons. Fiz. Tverd. Tela (St. Petersburg) 40, 1753–1759 (September 1998)  相似文献   

17.
Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s?1 mM?1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s?1 mM?1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T 2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.  相似文献   

18.
Catalyst is considered to be the most crucial parameter for the growth of carbon nanotubes. In this work we study the ferromagnetic resonance (FMR) spectra of the catalyst nanoclusters. Moreover we report for the first time the angle FMR studies of catalyst particles with and without CNT layer. The dependencies of the FMR spectra, X-ray diffraction (XRD) patterns, Raman spectra and morphology of the CNT layers on the growth conditions are discussed.  相似文献   

19.
20.
The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0–72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号