首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A.A. Ali   《Journal of luminescence》2009,129(11):1314-1319
Sm3+-doped calcium fluoride bismuth borate glasses were prepared and characterized optically and the oscillator strengths and Judd–Ofelt parameters for the glass containing 1.5 mol% of Sm2O3 were calculated. Density and optical absorption, transmission and the emission spectra were measured. The values of Judd–Ofelt parameters suggested an increase in the degree of asymmetry the local ligand field at Sm3+ sites. The optical band gap energy, band tailing parameter and Urbach's energy were calculated for all glass samples. It was found that with increasing the concentration of Sm2O3 content the values of the optical band gap energy decrease whereas Urbach's energy increases. Absorption and excitation spectra indicate that commercial UV and blue laser diodes, blue and bluish-green LEDs and Ar+ optical laser are powerful excitation sources for Sm3+ visible fluorescence in the glass.  相似文献   

2.
Structural and spectroscopic properties of Sm3+-doped alkali silicate glasses were investigated after densification at 7.7?GPa in a large volume high pressure apparatus. The glass composition was 33M2O?+?66SiO2?+?1Sm2O3, where M?=?Li, Na or K. Raman and infrared spectroscopy revealed small changes in the vibrational modes dependent on the alkali ion. Irreversible changes were observed in the optical absorption spectra of Sm3+ ions. The Judd–Ofelt parameters were calculated to evaluate the effect of pressure on the local field. For lithium silicate, Ω2 parameter increased, suggesting the densification increased the local asymmetry of the Sm3+ environment. For sodium silicate, this parameter decreased considerably, suggesting the opposite effect on the local field, while for potassium silicate, it remained practically unchanged. The changes induced by high pressure are probably due to the irreversible changes in the distances and bond angles between the rare earth ion and the ligands.  相似文献   

3.
Sm3+-doped Li2O–BaO–B2O3 glass was prepared by the conventional melt quenching method in air atmosphere. Sm2+ ions were obtained by two methods, i.e. heating the as-made glass in a reducing atmosphere and irradiating the sample under X-rays. The two obtained samples were investigated by luminescence spectra and lifetime measurements. It was found that the conversion of Sm3+→Sm2+ after X-ray irradiation is efficient in this borate glass. Photo-stability of Sm2+ ions was evaluated by the photo-bleaching method. Furthermore, thermo-luminescence was also measured. The different defects and the reduction mechanism of Sm2+ ions in this borate glass were discussed. This would be helpful to understand the reduction mechanism of Sm2+ ions in borate glasses.  相似文献   

4.
Room temperature visible and near infrared optical absorption and emission spectra of Sm3+-doped lead borate titanate aluminum fluoride (LBTAF) glasses with molar composition (50−x) PbO−30H3BO3−10TiO2−10AlF3xSm2O3 (x=0.1, 0.5, 1.0 and 2.0) have been analyzed. Energy parameters for the 4f5 electronic configuration of Sm3+: LBTAF glasses have been evaluated using free-ion Hamiltonian model. The experimental oscillator strengths of absorption bands have been used to determine the J-O parameters. Fluorescence spectra were recorded by exciting the samples with 402 nm. Using the J-O parameters and luminescence data, the radiative transition probabilities (AR), branching ratios (βR) and stimulated emission cross-sections (σe) were obtained. The decay curves of 4G5/26H7/2 transition exhibit single exponential for lower concentration (0.1 mol%) and non-exponential for higher concentrations. This concentration quenching has been attributed to the energy transfer through cross-relaxation between Sm3+ ions. From the values of the radiative parameters, it is concluded that 1.0 mol% Sm3+-doped LBTAF glass may be used for laser active medium with emission wavelength at 600 nm.  相似文献   

5.
This paper reports the luminescence potential of the dysprosium ion (Dy3+)-doped (varying contents from 0.1 to 1.0 mol%) magnesium borate glasses prepared by the melt-quenching method. As-quenched samples were characterized systematically to determine the effects of various Dy3+ contents on their structure, physical and optical traits. The Judd−Ofelt (J−O) intensity parameters (Ω2, Ω4, Ω6) and radiative properties of the best sample (with 0.7 mol% of Dy3+ doping) was evaluated to complement the experimental optical data. The studied glasses revealed three luminescence emission peaks at 382 nm (4F9/26H15/2, intense Blue), 572 nm (4F9/26H15/2, intense Yellow) and 661 nm (4F9/26H11/2, weak Red) under the excitation wavelength of 347 nm. The emission intensity was first increased up to the Dy3+ content of 0.7 mol% and then quenched. The observed luminescence intensity quenching was due to the resonant energy transfer from the excited state to the neighbouring ground state of Dy3+. The obtained high value of Ω2 signified the strong degree of covalency between the Dy3+ and ligand environment. The optimum glass sample (with 0.7 mol% of Dy3+) showed higher values of the branching ratio and stimulated emission cross-cross section for the 4F9/26H15/2 (yellow) emission transition, indicating its potential as bright yellow luminescent material and high gain visible laser applications.  相似文献   

6.
Sodium borate and fluoroborate glasses doped with trivalent samarium (Sm3+) were prepared and their detailed spectroscopic analysis was carried out. The FTIR spectra reveal that, the glasses contain BO3, BO4, non-bridging oxygen and strong OH bonds. From the optical absorption spectra, Judd-Ofelt intensity parameters (Ωλ, λ=2, 4 and 6) have been evaluated and are in turn used to predict radiative properties such as radiative transition probability (A), stimulated emission cross section () and branching ratios (βR) for the excited levels of Sm3+ ions in sodium borate and sodium fluoroborate glasses. The dependence of the spectral characteristics of Sm3+ ions due to compositional changes have been examined and reported. The value is found to decrease with the decrease in the sodium content in the glass. The decay from the 4G5/2 level is found to be non-exponential indicating a cross-relaxation among the Sm3+ ions.  相似文献   

7.
We report femtosecond laser bonding with strengths of a few MPa and the material mixing during the laser bonding process by using Sm3+- and Cr3+-doped glasses and 180 fs pulses at a repetition rate of 1 kHz from an amplified Ti:sapphire laser at a wavelength of 785 nm. By analyzing fluorescence spectra taken around the interface using a confocal scanning microscope we observed the migration of Sm ions from the upper Sm-doped glass to the lower Cr-doped glass and the reduction from Sm3+ to Sm2+ ions just above the interface for the borate-borate material system. However, in Sm-doped borate-borosilicate, the laser bonding did not produce any reduction and migration of Sm3+ ions.  相似文献   

8.
A continuous-wave (CW) YAG laser (power: 0.75–0.9 J/s, irradiation time: 15 s–15 min) with a wavelength of 1064 nm is irradiated to 11.1Sm2O3·44.4BaO·44.4B2O3 glass, and the formation of β-BaB2O4 (β-BBO) crystalline dots with a diameter of 30–150 μm is confirmed from micro-Raman spectra. β-BBO crystals with around 200 μm length grow towards the interior of the glass. The incorporation of Sm3+ into β-BBO crystalline dots is suggested from micro-Raman and fluorescence spectra. The second harmonic generation is detected from the array (10×10=100 dots) of β-BBO crystalline dots, indicating that each crystalline dot formed by YAG laser irradiation is a nonlinear optical crystal. CW YAG laser irradiation to glass with Sm3+ ions is a nice technique for a spatially controlled crystal growth.  相似文献   

9.
The Sm3+-doped lead fluorophosphate glasses of composition 44P2O5–17K2O–9Al2O3–(24?x)PbF2–6Na2O–xSm2O3, where x=0.01, 0.05, 0.1, 0.5, 1.0 and 2.0 mol%, have been prepared by conventional melt quenching technique and are characterized through differential thermal analysis, Raman, absorption and emission spectra and decay rate measurements. Free-ion Hamiltonian model for energy level analysis and Judd–Ofelt theory for spectral intensities have been used to analyze the spectroscopic properties of Sm3+ ions in lead fluorophosphate glasses. The decay rates for the 4G5/2 level of Sm3+ ions have been measured and are found to be single exponential at lower concentration (≤0.1 mol% Sm2O3) and turn into non-exponential at higher concentrations (≥0.5 mol% Sm2O3) due to energy transfer through cross-relaxation. The experimental lifetimes for 4G5/2 level of Sm3+ ions are found to decrease from 2.54 to 0.92 ms when the concentration increased from 0.01 to 2.0 mol% Sm2O3 due to energy transfer. In order to know the nature of the energy transfer mechanism, the non-exponential decay rates are well fitted to Inokuti–Hirayama model for S=6, which indicates that the energy transfer process is of dipole–dipole type.  相似文献   

10.
This paper reports on different physical and optical properties of Nd3+-doped soda-lime silicate glass. The glasses containing Nd3+ in (65−x)SiO2:25Na2O:10CaO:xNd2O3 (where x=0.0-5.0 mol%) have been prepared by the melt-quenching method. In order to understand the role of Nd2O3 in these glasses the density, molar volume, refractive index and optical absorption were investigated. The results show that the density and molar volume of the glasses increase with an increase in Nd2O3 concentration and consequently generate more non-bridging oxygen (NBOs) into glass matrix. The optical absorption spectra were measured in the wavelength range from 300 to 700 nm and the optical band gaps were determined. It was found that the optical band gap decreases with an increase in Nd2O3 concentration. On the basis of the measured values of density and refractive index, the Nd3+ ion concentration in glasses, the polarizability of oxide ions and optical basicity were theoretically determined.  相似文献   

11.
Physical and spectral studies on 20ZnO + xLi2O + (30-x)Na2O + 50B2O3 (5 ≤ x ≥ 25) doped with 0.1 mol% of paramagnetic CuO impurity are carried out. Powder X-ray diffraction patterns of the glass samples confirm the amorphous nature. The physical parameters of all the glasses were also evaluated with respect to the composition. The electron paramagnetic resonance spectra of all these glasses exhibit resonance signals that are characteristic of Cu2+ ions. The optical absorption spectra also confirm the Cu2+ ion in tetragonally elongated octahedral site. Various crystal field, spin-Hamiltonian and bonding parameters are evaluated. It is observed that the mixed alkali effect is significant.  相似文献   

12.
The fluorescence property of xTbF3-BaF2-AlF3-GeO2+ySmF3 (x=0.01-40 mol%, y=0-5 wt%) glasses were investigated. The enhancement of Sm3+ fluorescence was recognized in the presence of Tb3+. Increasing Tb3+ content, the emission color changed from green to orange. When the intensity of fluorescence at 540 nm originated from Tb3+ is compared with that at 600 nm originated from Sm3+, the information about the concentration quenching of Tb3+ and Sm3+ was obtained. From these results, rare earth ions were dispersed identically in the glasses. After heating to 673 K or cooling to 77 K, the emission color of 20TbF3-20BaF2-10AlF3-50GeO2/mol%+0.05 wt% SmF3 glass was reversibly changed from orange to green. In addition, while the emission from 10TbF3-20BaF2-10AlF3-60GeO2+0.01 wt% SmF3 glass was green, its crystallized sample, prepared by annealing at 1073 K, exhibited an orange emission due to Sm3+ at room temperature.  相似文献   

13.
The femtosecond laser was used to irradiate sol-gel derived Sm3+-doped Al2O3-SiO2 glasses, in which the Sm3+ was reduced into Sm2+ ions. The fluorescence line narrowing was applied to investigate the coordination sphere of the Sm2+ ion. The spectral hole burning was performed on 7F05D0 transition of the Sm2+. The depth and width of the burnt holes were ∼27% and ∼4 cm−1 FWHM at 7 K, respectively. Hole spectra were stable up to room temperature. The hole-burning efficiency was superior to that of Sm2+ in H2 treated glasses and comparable to that in X-ray in terms of hole-burning dynamics.  相似文献   

14.
Rare-earth doped xerogels (Eu3+, Sm3+, Ho3+, Pr3+) were prepared by using the sol-gel method and their magneto-optical and optical properties have been studied. The Magnetic Circular Dichroism (MCD) spectra are quite similar to those recorded in the RE-doped fluorozirconate glasses; the fine structures shown by the MCD spectra are better resolved compared to the optical absorption spectra. The MCD technique has been correlated with optical measurements in order to investigate the site symmetry in the particular case of Eu3+-doped xerogel and oxyfluoride glasses. In the xerogel, coordination symmetry around the Eu3+ ions is close to D3h and is lower in the oxyfluoride glass.  相似文献   

15.
Luminescent glasses activated with Sm3+ ions are of current interest given their potential for a wide range of photonic applications. In this work, Sm3+-containing P2O5:BaO glasses are prepared by a simple melt-quench method, and the influence of CuO and SnO co-doping on Sm3+ photoluminescence (PL) is investigated. Optical absorption, solid-state 31P nuclear magnetic resonance spectroscopy, and PL spectroscopy are employed in the assessment of material optical and structural properties. The data indicates that monovalent copper ions and twofold-coordinated Sn centers are successfully stabilized in the matrix and both species can enhance the orange–red emission of Sm3+ ions. The optical properties of the material after heat treatment have been also assessed. Results indicate the chemical reduction of ionic copper via Sn2+ ultimately producing Cu nanoparticles as evidenced by the surface plasmon resonance. As a result, Sm3+ PL diminishes consistent with an excitation energy transfer to plasmonic Cu particles, i.e. the “plasmonic diluent” effect prevails.  相似文献   

16.
The 75TeO2–20ZnO–4Na2CO3–1Er2O3 (in molar ratio) glass system was prepared by the conventional melt-quenching method. As such, the samples prepared were investigated by differential scanning calorimetry (DSC), X-ray diffractrometry (XRD), Raman spectroscopy and infrared luminescence. DSC analyses were carried out on our glass at different heating rates between 5 and 20 °C/min. The result of the annealing temperature on the spectroscopic properties of Er3+ in tellurite glasses was discussed. The activation energy, for surface crystallization, was determined graphically from a Kissinger-type plot and had a value about 897.2 kJ/mol. Crystalline phases for both α-TeO2, γ-TeO2 and Zn2Te3O8 system were determined by the XRD method and were confirmed by Raman spectroscopy characterizations after heat treatment. The effect of heat treatment on absorption spectra and luminescence properties in the tellurite glass was also investigated. With heat treatment, the ultraviolet absorption edge presented a redshift. As a result, the Judd–Ofelt (J–O) intensity parameters (Ω2, Ω4, Ω6) were determined. The spontaneous emission probabilities of some relevant transitions, the branching ratio and the radiative lifetimes of several excited states of Er3+ were predicted using intensity J–O parameters. The near infrared emission that corresponds to Er3+: 4I13/24I15/2 can be significantly enhanced after heat treatment. Notably, it is found that the luminescence lifetime in the present system is much longer than that in most other glasses and glass ceramics. A comparative study on luminescence performance suggests that the obtained glass ceramic is a promising material for Er3+ doped fiber amplifiers.  相似文献   

17.
Transparent phosphate glass ceramics co-doped with Er3+ and Yb3+ in the system P2O5Li2OCaF2TiO2 were successfully synthesized by melt-quenching and subsequent heating. Formation of the nanocrystals was confirmed by X-ray powder diffraction. Judd–Ofelt analyses of Er3+ ions in the precursor glasses and glass ceramics were performed to evaluate the intensity parameters Ω2,4,6. Under 975 nm excitation, intense upconversion (UC) and infrared emission (1545 nm) were observed in the glass ceramics by efficient energy transfer from Yb3+ to Er3+. The luminescence processes were explained and the emission cross section was calculated by Fuchtbauer–Ladenburg (F–L) formula. The results confirm the potential applications of Er3+/Yb3+ co-doped glass ceramics as laser and fiber amplifier media.  相似文献   

18.
Rare-earth doped oxyfluoride 75SiO2:25PbF2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol–gel derived glasses. Room temperature luminescence features of Eu3+, Sm3+, Tb3+, Eu3+/Tb3+, and Sm3+/Tb3+ ions incorporated into low-phonon-energy PbF2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV light emitting diode were investigated. The luminescence spectra exhibited strong emission signals in the red (600, 610, 625, and 646 nm), green (548 and 560 nm), and blue (485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggests that the nanocomposite phosphor based upon 75SiO2:25PbF2 host herein reported is a promising contender for white-light LED applications.  相似文献   

19.
Single crystals of gadolinium orthosilicate Gd2SiO5 containing 0.5 at% and 5 at% of Sm3+ were grown by the Czochralski method. Optical absorption spectra, luminescence spectra and luminescence decay curves were recorded for these systems at 10 K and at room temperature. Comparison of optical spectra recorded in polarized light revealed that the anisotropy of this optically biaxial host affects the intensity distribution within absorption and emission bands related to transitions between multiplets rather than the overall band intensity. It has been found that among four bands of luminescence related to the 4G5/26HJ (J=5/2–11/2) transitions of Sm3+ in the visible and near infrared region the 4G5/26H7/2 one has the highest intensity with a peak emission cross section of 3.54×10−21 cm2 at 601 nm for light polarized parallel to the crystallographic axis c of the crystal. The luminescence decay curve recorded for Gd2SiO5:0.5 at% Sm3+ follows a single exponential time dependence with a lifetime 1.74 ms, in good agreement with the 4G5/2 radiative lifetime τ rad=1.78 ms calculated in the framework of Judd-Ofelt theory. Considerably faster and non-exponential luminescence decay recorded for Gd2SiO5:5 at% Sm3+ sample was fitted to that predicted by the Inokuti-Hirayama theory yielding the microparameter of Sm3+–Sm3+ energy transfer C da=1.264×10−52 cm6×s−1.  相似文献   

20.
The Sm3+ ion in the Cs2NaYF6 single crystal was studied by optically detected electron paramagnetic resonance spectroscopy. Magnetic resonance signals were recorded by Faraday rotation at the frequency of 0.6–0.85 GHz and magnetic fields of about 0.14 T. The hyperfine parameters of 147Sm3+ and 149Sm3+ isotopes were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号