首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Similarity solution for a spherical shock wave with or without gravitational field in a dusty gas is studied under the action of monochromatic radiation. It is supposed that dusty gas be a mixture of perfect gas and micro solid particles. Equilibrium flow condition is supposed to be maintained and energy is varying which is continuously supplied by inner expanding surface. It is found that similarity solution exists under the constant initial density. The comparison between the solutions obtained in gravitating and non-gravitating medium is done. It is found that the shock strength increases with an increase in gravitational parameter or ratio of the density of solid particles to the initial density of the gas, whereas an increase in the radiation parameter has decaying effect on the shock waves.  相似文献   

2.
Similarity solution for a spherical shock wave with or without gravitational field in a dusty gas is studied under the action of monochromatic radiation. It is supposed that dusty gas be a mixture of perfect gas and micro solid particles. Equilibrium flow condition is supposed to be maintained and energy is varying which is continuously supplied by inner expanding surface. It is found that similarity solution exists under the constant initial density. The comparison between the solutions obtained in gravitating and non-gravitating medium is done. It is found that the shock strength increases with an increase in gravitational parameter or ratio of the density of solid particles to the initial density of the gas, whereas an increase in the radiation parameter has decaying effect on the shock waves.  相似文献   

3.
A self-similar flow behind a cylindrical shock wave is studied under the action of monochromatic radiation in a rotational axisymmetric dusty gas. The dusty gas is taken to be a mixture of small solid particles and perfect gas,and solid particles are continuously distributed in the mixture. The similarity solutions are obtained and the effects of the variation of the radiation parameter, the ratio of the density of solid particles to the initial density of the gas, the mass concentration of solid particles in the mixture and the index for the time dependent energy law are investigated.It is observed that an increase in the radiation parameter has decaying effect on the shock waves; whereas the shock strength increases with an increase in the ratio of the density of solid particles to the initial density of the gas or the index for the time dependent energy law. Also, it is found that an increase in the radiation parameter has effect to decrease the flow variables except the density and the azimuthal component of fluid velocity. A comparison is also made between rotating and non-rotating cases.  相似文献   

4.
The nonlinear electrostatic drift waves are studied using quantum hydrodynamic model in dusty quantum magnetoplasmas. The dissipative effects due to collisions between ions and dust particles have also been taken into account. The Korteweg-de Vries Burgers (KdVB) like equation is derived and analytical solution is obtained using tanh method. The limiting cases of KdV type solitary waves, Burger type monotonic shock waves and oscillatory shock solutions are also presented. It is found that both hump and dip type solitary structures are possible in quantum dusty plasmas. However, amplitude and width of the nonlinear structure depend on the dust charge polarity and its concentration in electron-ion quantum plasmas. The monotonic shock like structure is independent of the quantum parameter. It is found that shock strength is increased in the presence of positively charged particles in comparison with negatively charged dust particles. The oscillatory shock structures are also obtained and it is found that change in dust charge polarity only shifts the phase of the oscillatory shock in plasmas. The numerical results are also presented for illustration.  相似文献   

5.
The quantum hydrodynamic model is employed to study the nonlinear structure of non-planar dust acoustic waves in quantum dusty plasmas consisting of electrons, ions, and negatively/positively charged dust particles. A Kadomstev-Petviashvili equation is derived in cylindrical geometry. Based on the analytical solution, it is found that the Nebulon structure is significantly modified by the quantum effects including quantum diffraction effect and quantum statistical effect.  相似文献   

6.
An instability forms in gas of constant density (air) with an initial nonuniform seeding of small particles or droplets as a planar shock wave passes through the two-phase medium. The seeding nonuniformity is produced by vertical injection of a slow-moving jet of air premixed with glycol droplets or smoke particles into the test section of a shock tube, with the plane of the shock parallel to the axis of the jet. After the shock passage, two counterrotating vortices form in the plane normal to that axis. The physical mechanism of the instability we observe is peculiar to multiphase flow, where the shock acceleration causes the second (embedded) phase to move with respect to the embedding medium. With sufficient seeding concentration, this leads to entrainment of the embedding phase that acquires a relative velocity dependent on the initial seeding, resulting in vortex formation in the flow.  相似文献   

7.
The properties of dust–ion acoustic (DIA) shock wave in a dusty plasma containing positive and negative ions is investigated. The reductive perturbation method has been used to derive the Korteweg–de Vries–Burgers equation for dust acoustic shock waves in a homogeneous, unmagnetized and collisionless plasma whose constituents are Boltzmann distributed electrons, singly charged positive ions, singly charged negative ions and cold static dust particles. The KdV–Burgers equation is derived and its stationary analytical solution is numerically analyzed where the effect of viscosity on the DIA shock wave propagation is taken into account. It is found that the viscosity in the dusty plasma plays as a key role in dissipation for the propagation of DIA shock.  相似文献   

8.
The variation of flow-variables with distance, in the flow-field behind a shock wave propagating in a dusty gas with exponentially varying density, are obtained at different times. The equilibrium flow conditions are assumed to be maintained, and the results are compared with those obtained for a perfect gas. It is found that the presence of small solid particles in the medium has significant effects on the variation of density and pressure. Received 20 October 1999 and Received in final form 9 March 2000  相似文献   

9.
Ion acoustic shock waves (IASW's) are studied in an unmagnetized plasma consisting of electrons, positrons and adiabatically hot positive ions. This is done by deriving the Kortweg-deVries-Burger (KdVB) equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. It is observed that the positron concentration, ratio of ion to electron temperature, and the plasma kinematic viscosity significantly modifies the shock structure. Finally, it is found that the temporal evolution of the non-planar IASW's is quite different by comparison with the planar geometry. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.  相似文献   

10.
First, a solution is presented for a canonical problem in wave propagation. Second, illustrations and applications of the results are carried out to study cases which are relevant to the propagation problem in the ocean and atmosphere.The canonical problem consists of a plane wave incident on an arbitrary and continuously stratified region with planar boundaries. The explicit composition of the reflected, transmitted and propagated waves are derived. The solution is systematic and allows for (i) discontinuities in the acoustic properties at boundaries and arbitrary variation within, (ii) attenuation, (iii) all angles of incidence. The general expressions are obtained by using an alternate procedure to one recently devised [1]. The present approach is straightforward and plainly amenable to physical interpretation of its auxiliary mathematical constants. The discontinuities at the boundaries are satisfied at the outset. The reflected and transmitted waves are directly and explicitly specified. Comparison to widely used techniques in both analytical and numerical works is made to demonstrate the viability of the present approach.A series of cases relevant to the problem at hand are considered. These cases illustrate the mechanics involved in use of the method, and expand its application to problems that appear to be at variance with the formulation of the canonical problem. The illustrations include attenuation in the medium, effect on the solution of different acoustic discontinuities at the boundaries, and use of an inhomogeneous background profile with known independent solutions. The expanded applications treat formally three types of problems: (i) the exact solution for plane waves in continuously stratified media where the well-used ray theory or W-K-B approximation serves only as a first approximation in a correct iterative solution; (ii) the scattering of a plane wave by non-planar boundaries, i.e., spherical or cylindrical acoustic lens with the stratification along the radial direction; (iii) the field due to a point source in a continuously stratified wave guide, like the ocean or atmosphere.  相似文献   

11.
Specific features of shock wave interaction in a viscous heat-conducting gas with a low ratio of specific heats are numerically studied. The case of the Mach reflection of shock waves with a negative angle of the reflected wave with respect to the free-stream velocity vector is considered, and the influence of viscosity on the flow structure is analyzed. Various issues of nonuniqueness of the shock wave configuration for different Reynolds numbers are discussed. Depending on the initial conditions and Reynolds numbers, two different shock wave configurations may exist: regular configuration interacting with an expansion fan and Mach configuration. In the dual solution domain, a possibility of the transition from regular to the Mach reflection of shock waves is considered.  相似文献   

12.
沙莎  陈志华  张庆兵 《物理学报》2015,64(1):15201-015201
本文基于大涡模拟方法, 采用高阶精度格式对平面入射激波以及不同反射距离条件下的反射激波与SF6重气泡相互作用过程进行了三维数值模拟. 数值结果清晰地显示了SF6重气泡在激波作用下诱导Richtmyer-Meshkov不稳定性过程, 揭示了入射激波以及反射激波在气泡界面聚焦诱导射流的过程, 详细分析了不同反射距离条件下反射激波与SF6重气泡作用过程及流场结构.  相似文献   

13.
Apul N Dev 《中国物理 B》2017,26(2):25203-025203
The dust acoustic(DA) shock wave with dust charge fluctuations, non-Maxwellian ions, and non-isothermal electrons is studied theoretically. The perturbation technique is employed to derive the lower order three-dimensional(3D) Burgers equation, and shock wave solution is explored by the tan-hyperbolic method. The effects of flat trapped and trapped electron distributions in the presence of Maxwellian and non-Maxwellian ions on characteristics shock waves are observed. The temperature ratio of non-Maxwellian ion temperature and non-isothermal electron temperature is found to play an important role in forming the shock-like structure.  相似文献   

14.
The nonlinear dust‐ion‐acoustic (DIA) solitary structures have been studied in a dusty plasma, including the Cairns‐Gurevich distribution for electrons, both negative and positive ions, and immobile opposite polarity dust grains. The external magnetic field directed along the z‐axis is considered. By using the standard reductive perturbation technique and the hydrodynamics model for the ion fluid, the modified Zakharov–Kuznetsov equation was derived for small but finite amplitude waves and was provided the solitary wave solution for the parameters relevant. Using the appropriate independent variable, we could find the modified Korteweg–de Vries equation. By plotting some figures, we have discussed and emphasized how the different plasma values, such as the trapping parameter, the positive (or negative) dust number density, the non‐thermal electron parameter, and the ion cyclotron frequency, can influence the solitary wave structures. In addition, using the bifurcation theory of planar dynamical systems, we have extracted the centre and saddle points and illustrated the phase portrait of such a system for some particular plasma parameters. Finally, we have graphically investigated the behaviour of the solitary energy wave by changing the plasma values as well as by calculating the instability criterion; we have also discussed the growth rate of the solitary waves. The results could be useful for studying the physical mechanism of nonlinear propagation of DIA solitary waves in laboratory and space plasmas where non‐thermal electrons, pair‐ions, and dust particles can exist.  相似文献   

15.
The nonlinear features of dust acoustic waves (DAWs) propagating in a multicomponent dusty plasma with negative dust grains, Maxwellian ions, and double spectral electron distribution (DSED) are investigated. A Korteweg de Vries Burgers equation (KdVB) is derived in the presence of the polarization force using the reductive perturbation technique (RPT). In the absence of the dissipation effect, the bifurcation analysis is introduced and various types of solutions are obtained. One of these solutions is the rarefactive solitary wave solution. Additionally, in the presence of the dissipation effects, the tanh method is employed to find out the solution of KdVB equation. Both of the monotonic and the oscillatory shock structures are numerically investigated. It is found that the correlation between dissipation and dispersion terms participates strongly in creating the dust acoustic shock wave. The limit of the DSED to the Maxwell distribution is examined. The distortional effects in the profile of the shock wave that result by increasing the values of the flatness parameter, r, and the tail parameter, q, are investigated. In addition, it has been shown that the proportional increase in the value of the polarization parameter R enhances in both of the strength of the monotonic shock wave and the amplitude of the oscillatory shock wave. The effectiveness of non-Maxwellian distributions, like DSED, in several of plasma situations is discussed as well.  相似文献   

16.
The corrugation stability of the flat surface of a fast magnetohydrodynamic shock wave in a perfect monoatomic gas with a constant heat capacity is studied with numerical techniques. The magnetic field makes an arbitrary angle with the plane of discontinuity. It is shown that the shock wave remains stable only if it is strictly perpendicular to the magnetic field. At any other angle between the fast shock wave and magnetic field, the former may spontaneously radiate outwardly propagating magnetohydrodynamic waves under certain conditions. Incoming flow characteristics at which these waves are induced are determined.  相似文献   

17.
张碧星  王文龙 《物理学报》2008,57(6):3613-3619
开展了凹面线性相控阵列辐射声场在液固界面上的反射和折射特性研究,利用射线近似方法,得到了凹面相控阵聚焦声场在液固界面上反射和折射后的声场渐近解析表达式,对声波在液固曲面上的反射和折射声场进行了分析和讨论. 利用这个解析表达式,对凹面线性聚焦声场在液固平界面和液固圆柱界面情况下固体中折射纵波和折射横波的相控阵声场进行了分析和讨论,发现凹面线阵声场在液固圆柱界面下比液固平界面具有更好的聚焦效果. 关键词: 凹面阵列 超声相控阵 反射与折射  相似文献   

18.
The effect of dust charging and influence of its fluctuation on dust-acoustic shock waves in the sheath region of the dusty plasma is investigated. By employing the reductive perturbation technique, the Burgers' equation is derived. The weak shock wave solution is obtained and discussed in this dust-charge-fluctuation system.  相似文献   

19.
The effect of dust charging and influence of its fluctuation on dust-acoustic shock waves in the sheath region of the dusty plasma is investigated. By employing the reductive perturbation technique, the Burgers' equation is derived. The weak shock wave solution is obtained and discussed in this dust-charge-fluctuation system.  相似文献   

20.
We have performed numerical analysis of the one-dimensional dynamics of the cylindrical/spherical dust ion acoustic shock waves in unmagnetized dusty plasma consisting of positive ions, immobile dust particles, and nonextensive distributed cold and hot electrons. A multiple-scale expansion method is used to derive Burgers Equation (BE) and modified Burgers equation (MBE) by including higher order nonlinearity. The basic characteristics of the shock waves have been analysed numerically and graphically for different physical parameters relevant to Saturn' E ring through 2D figures. The parametric dependence of dust ion acoustic shock waves on some plasma parameters nonextensive index, density, and temperature of cold and hot electrons, concentration of dust particles, thermal effects and kinematic viscosity of ions is explored. Furthermore, it is found that the nonplanar geometry effects have an important impact on the establishment of shock waves. The amplitude of the wave decreases faster as one departs away from the axis of the cylinder or centre of the sphere. Such decaying behaviour continues as time progresses. It is also found that an increasing dust concentration decreases the amplitude of the dust ion acoustic shock waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号