首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flight tests of modern high-performance fighter aircraft reveal the presence of limit cycle oscillation (LCO) responses for aircraft with certain external store configurations. Conventional linear aeroelastic analysis predicts flutter for conditions well beyond the operational envelope, yet these store-induced LCO responses occur at flight conditions within the flight envelope. Several nonlinear sources may be present, including aerodynamic effects such as flow separation and shock-boundary layer interaction and structural effects such as stiffening, damping, and system kinematics. No complete theory has been forwarded to accurately explain the mechanisms responsible. This research examines a two degree-of-freedom aeroelastic system which possesses kinematic nonlinearities and a strong nonlinearity in pitch stiffness. Nonlinear analysis techniques are used to gain insight into the characteristics of the behavior of the system. Numerical simulation is used to verify and validate the analysis. It is found that when system damping is low, the system clearly exhibits nonlinear interaction between aeroelastic modes. It is also shown that although certain applied forcing conditions may appear negligible, these same forces produce large amplitude LCOs under specific realizable circumstances.  相似文献   

2.
Limit cycle oscillations (LCO) of wings on certain modern high performance aircraft have been observed in flight and in wind tunnel experiments. Whether the physical mechanism that gives rise to this behavior is a fluid or structural nonlinearity or both is still uncertain. It has been shown that an aeroelastic theoretical model with only a structural nonlinearity can predict accurately the limit cycle behavior at low subsonic flow for a plate-like wing at zero angle of attack. Changes in the limit cycle and flutter behavior as the angle of attack is varied have also been observed in flight. It has been suggested that this sensitivity to angle of attack is due to a fluid nonlinearity. In this investigation, we study the flutter and limit cycle behavior of a wing in low subsonic flow at small steady angles of attack. Experimental results are compared to those predicted using an aeroelastic theoretical model with only a structural nonlinearity. Results from both experiment and theory show a change in flutter speed as the steady angle of attack is varied. Also the LCO magnitude increased at a given velocity as the angle of attack was increased for both the experiment and theory. While not proving that the observed sensitivity to angle of attack of LCO in aircraft is due to a structural nonlinearity, the results do show that a change in the aeroelastic behavior at angles of attack can be caused by a structural nonlinearity as well as a fluid nonlinearity. In this paper, only structural nonlinearities are considered, but an extension to include aerodynamic nonlinearities would be very worthwhile.  相似文献   

3.
飞机结构气动弹性分析与控制研究   总被引:7,自引:0,他引:7  
随着主动控制技术的发展,飞机结构设计理念已由提高结构刚度的被动设计转变为随控布局的主动设计.主动设计理念不再刻意回避气动弹性问题,而是采用主动控制技术实时调节结构气动弹性,进而减轻结构重量、优化飞机性能. 在飞机随控布局主动设计中,必须深入分析结构与气流之间的耦合,才能更好发挥气动弹性主动控制技术的作用. 从20 世纪80 年代起,航空科技界对该问题进行了长期研究,对飞机结构-空气动力-主动控制相互耦合后的关键力学问题有了深入理解. 然而,已有研究多基于简化模型,导致研究结果难以直接应用于工程. 本文将针对气动弹性动态问题,综述空气动力非线性、控制面间隙非线性、时滞诱发失稳、颤振主动抑制、突风载荷减缓、风洞实验验证等方面的国内外研究进展,重点介绍近年来作者团队所提出的若干方法及相关算例和风洞实验. 最后,指出今后一个时期值得研究的若干气动弹性分析与控制问题.   相似文献   

4.
静气动弹性问题考虑弹性结构与定常气动力间的相互耦合作用,对飞行器的性能和安全具有显著的影响.在现代飞行器设计阶段,计算流体力学(CFD)/计算结构力学(CSD)直接耦合方法是精确考察静气动弹性影响的重要手段.然而,基于CFD技术的气动力仿真手段在耦合过程中计算量大且耗时长,难以满足设计阶段的需求.因此,为了兼顾计算精度与效率,文章采用本征正交分解(POD)和Kriging代理模型相结合的模型降阶方法,替代CFD求解过程并耦合有限元分析(FEA)方法,建立了高效、准确的静气动弹性分析框架.相较于传统的以模态法为主的静气动弹性分析方法,该方法能够解决更为复杂的静气动弹性问题以及提供静气动弹性变形过程中的气动分布载荷.针对典型三维跨声速HIRENASD机翼模型开展的马赫数、迎角变化的算例验证表明:由建立的静气动弹性分析方法与CFD/CSD直接耦合方法计算得到机翼翼梢处的静变形量间的相对误差在5%以内;同时该方法预测静平衡位置处的气动分布载荷的误差在5%以内,静气动弹性分析的计算效率至少提升了6倍.  相似文献   

5.
黄锐  胡海岩 《力学进展》2021,51(3):428-466
现代飞行器日益呈现结构轻质化、控制系统宽通带和高权限的发展趋势. 因此, 非定常气动力、柔性结构和主动控制系统三者间的耦合力学成为重要的研究领域. 自20世纪80年代起, 航空界开始关注受控飞行器的气动弹性稳定性以及主动控制问题, 但对气动/结构的非线性效应、控制回路时滞对受控飞行器动力学行为的影响规律研究尚不充分. 研究这些影响规律不仅涉及非线性、高维数、多变参数和时滞效应等难题, 而且必须面对空气动力、飞行器结构、驱动机构、控制系统之间的强耦合问题. 其中的前沿难题是: 发展非线性气动伺服弹性动力学建模理论, 揭示上述因素诱发受控气动弹性振动的动力学机理, 开展气动伺服弹性控制风洞实验. 本文针对非线性气动伺服弹性力学所涉及的非线性非定常气动力建模、非线性结构动力学、气动伺服弹性控制律设计、气动伺服弹性实验, 总结相关研究现状和最新进展, 特别是近年来作者学术团队的研究成果, 并对进一步研究给出若干建议.   相似文献   

6.
张伟伟  王博斌  叶正寅 《力学学报》2010,42(6):1023-1033
事先建立一个低阶的非线性、非定常气动力模型是开展非线性流场中气动弹性问题研究的一个捷径. 基于CFD方法, 通过计算结构在流场中自激振动的响应来获得系统的训练数据. 采用带输出反馈的循环RBF神经网络, 建立时域非线性气动力降阶模型.耦合结构运动方程和非线性气动力降阶模型, 采用杂交的线性多步方法计算结构在不同速度(动压)下的响应历程, 从而获得模型极限环随速度(动压)变化的特性. 两个典型的跨音速极限环型颤振算例表明, 基于气动力降阶模型方法的计算结果与直接CFD仿真结果吻合很好, 与后者相比其将计算效率提高了1~2个数量级.   相似文献   

7.
针对现有的非定常气动力建模方法对气动弹性预测的准确性和效率问题,将随机森林算法引入非定常气动力建模研究领域,构建了基于随机森林算法的非定常气动力降阶模型。将所得模型用于预测气动弹性,选择二维NACA0012翼型进行颤振边界的预测,选用NACA64A010翼型预测LCO特性,并说明了该降阶模型建模的详细过程,将其计算结果与CFD/CSD耦合计算结果及试验结果进行了对比。研究结果表明,该模型可行、高效且精确,可以快速准确地预测飞行器气动弹性特性。  相似文献   

8.
This paper aims the nonlinear aeroelastic analysis of slender wings using a nonlinear structural model coupled with the linear unsteady aerodynamic model. High aspect ratio and flexibility are the specific characteristic of this type of wings. Wing flexibility, coupled with long wingspan can lead to large deflections during normal flight operation of an aircraft; therefore, a wing in vertical/forward-afterward/torsional motion using a third-order form of nonlinear general flexible Euler–Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic strip theory based on the Wagner function is used for determination of aerodynamic loading on the wing. Combining these two types of formulation yields nonlinear integro-differentials aeroelastic equations. Using the Galerkin’s method and a mode summation technique, the governing equations will be solved by introducing a numerical method without the need to adding any aerodynamic state space variables and the corresponding equations related to these variables of the problem. The obtained equations are solved to predict the aeroelastic response of the problem. The obtained results for a test case are compared with those of some other works and show a good agreement between results.  相似文献   

9.
The paper presents the application of computational aeroelasticity (CA) methods to the analysis of a T-tail stability in transonic regime. For this flow condition unsteady aerodynamics show a significant dependency from the aircraft equilibrium flight configuration, which rules both the position of shock waves in the flow field and the load distribution on the horizontal tail plane. Both these elements have an influence on the aerodynamic forces, and so on the aeroelastic stability of the system. The numerical procedure proposed allows to investigate flutter stability for a free-flying aircraft, iterating until convergence the following sequence of sub-problems: search for the trimmed condition for the deformable aircraft; linearize the system about the stated equilibrium point; predict the aeroelastic stability boundaries using the inferred linear model. An innovative approach based on sliding meshes allows to represent the changes of the computational fluid domain due to the motion of control surfaces used to trim the aircraft. To highlight the importance of keeping the linear model always aligned to the trim condition, and at the same time the capabilities of the computational fluid dynamics approach, the method is applied to a real aircraft with a T-tail configuration: the P180.  相似文献   

10.
Nonlinear effects such as friction and freeplay on the control surfaces can affect aeroelastic dynamics during flight. In particular, these nonlinearities can induce limit cycle oscillations (LCO), changing the system stability, and because of this it is essential to employ computational methods to predict this type of motion during the aircraft development cycle. In this context, the present article presents a matrix notation for describing the Hénon’s method used to reduce errors when considering piecewise linear nonlinearities in the numerical integration process. In addition, a new coordinate system is used to write the aeroelastic system of equations. The proposal defines a displacement vector with generalized and physical variables to simplify the computational implementation of the Hénon’s technique. Additionally, the article discusses the influence of asymmetric freeplay and friction on the LCO of an airfoil with control surface. The results show that the extended Hénon’s technique provides more accurate LCO predictions, that friction can change the frequency and amplitude of these motions, and the asymmetry of freeplay is important to determine the LCO behavior.  相似文献   

11.
Current and future trends in the aerospace industry leverage on the potential benefits provided by lightweight materials that can be tailored to realize desired mechanical characteristics when loaded. For aircraft design, the deployment of aeroelastic tailoring is hindered by the need to re-compute, for any possible modification of the structure, the dependence of the aerodynamic field on the underlying structural properties. To make progress in this direction, the work presents a rapid computational fluid dynamics based aeroelastic tool which is built around a reduced order model for the aerodynamics that is updated for any modification of the structure by using the structural dynamics reanalysis method. The aeroelastic tailoring tool is demonstrated in transonic flow for the AGARD 445.6 wing, suitably modified with composite materials. It was found that the proposed method provides accurate engineering predictions for the aeroelastic response and stability when the structure is modified from the baseline model.  相似文献   

12.
Aeroelastic behavior of aircraft is significantly affected by the presence of engines mounted under the wings. Powered engines influence the unsteady aerodynamics on the one hand and lead to additional unsteady forces due to thrust vector oscillations on the other hand. This work focuses on the incorporation of aerodynamic engine effects into a small disturbance CFD framework to enhance the modeling accuracy of unsteady aerodynamics of aircraft. The effects are numerically modeled by mimicking physically reasonable flow conditions at the intake and nozzle planes of the engine nacelle. Subsequently, the influence of the engine effects on the flutter behavior of an aircraft is studied employing the small-disturbance-CFD-based flutter analysis. The basis for the investigation is the Common Research Model, which represents a modern transonic commercial airliner with a cruise Mach number of 0.85. Two configurations are considered: aircraft with passive engines represented by flow-through nacelles and aircraft with powered engines, where the novel small disturbance engine model is applied. The results are compared in terms of the flutter trends and the predicted flutter boundary. Furthermore, the impact of the modal induced thrust oscillations on the aeroelastic behavior of the aircraft is discussed.  相似文献   

13.
This article presents numerical simulations of the limit-cycle oscillation (LCO) of a cropped delta wing in order to investigate the effects of structural geometric and material nonlinearities on aeroelastic behavior. In the computational model, the structural part included both the geometric nonlinearity that arises from large deflections, and the material nonlinearity that originates from plasticity. The Euler equations were employed in the fluid part to describe the transonic aerodynamics. Moreover, the load transfer was conducted using a 3-D interpolating procedure, and the interfaces between the structural and aerodynamic domains were constructed in the form of an exact match. The flutter and LCO behaviors of the cropped delta wing were simulated using the coupling model, and the results were compared with existing experimental measurements. For lower dynamic pressures, the geometric nonlinearity provided the proper mechanism for the development of the LCO, and the numerical results correlated with the experimental values. For higher dynamic pressures, the material nonlinearity led to a rapid rise in the LCO amplitude, and the simulated varying trend was consistent with the experimental observation. This study demonstrated that the LCO of the cropped delta wing was not only closely related to geometric nonlinearity, but was also remarkably affected by material nonlinearity.  相似文献   

14.
对于大长细比导弹,需要在设计阶段准确计算气动弹性/气动伺服弹性,但其复杂的气动力给计算带来困难,因此气动力降阶模型是突破大长细比导弹跨音速气动弹性分析与控制瓶颈的关键技术.虽然气动力模型降阶方法已在预测二维机翼结构的气动弹性方面取得重要进展,但几乎未见关于全机模型的气动力降阶模型研究报道.本文基于递归Wiener模型的气动力降阶方法,利用CFD计算的气动力作为模型辨识数据,用鲁棒子空间和Levenberg-Marquardt算法辨识降阶模型参数,建立了大长细比导弹气动力降阶模型.在此基础上与大长细比导弹有限元模型相结合,构造出气动弹性降阶模型,并在数值仿真中测试气动弹性降阶模型在不同马赫数下的适用性.数值仿真结果表明,该气动弹性降阶模型能够精确预测导弹模型在不同飞行条件下的非定常气动力和导弹模型的气动弹性频率响应特性.  相似文献   

15.
The limit cycle oscillation (LCO) behaviors of an aeroelastic airfoil with free-play for different Mach numbers are studied. Euler equations are adopted to obtain the unsteady aerodynamic forces. Aerodynamic and structural describing functions are employed to deal with aerodynamic and structural nonlinearities, respectively. Then the flutter speed and flutter frequency are obtained by V-g method. The LCO solutions for the aeroelastic airfoil obtained by using dynamically linear aerodynamics agree well with those obtained directly by using nonlinear aerodynamics. Subsequently, the dynamically linear aerodynamics is assumed, and results show that the LCOs behave variously in different Mach number ranges. A subcritical bifurcation, consisting of both stable and unstable branches, is firstly observed in subsonic and high subsonic regime. Then in a narrow Mach number range, the unstable LCOs with small amplitudes turn to be stable ones dominated by the single degree of freedom flutter. Meanwhile, these LCOs can persist down to very low flutter speeds. When the Mach number is increased further, the stable branch turns back to be unstable. To address the reason of the stability variation for different Mach numbers at small amplitude LCOs, we find that the Mach number freeze phenomenon provides a physics-based explanation and the phase reversal of the aerodynamic forces will trigger the single degree of freedom flutter in the narrow Mach number range between the low and high Mach numbers of the chimney region. The high Mach number can be predicted by the freeze Mach number, and the low one can be estimated by the Mach number at which the aerodynamic center of the airfoil lies near its elastic axis. Influence of angle of attack and viscous effects on the LCO behavior is also discussed.  相似文献   

16.
Launch vehicle structural responses can couple with transonic flow state transitions at the nose of payload fairings. This self-sustained coupling yields a nonlinear equation of motion that can be analyzed using the force–response relationship and the periodicity condition. The traditional analysis approach for this phenomenon, however, linearizes the equation of motion by converting the alternating flow forces into an aerodynamic damping term and defines a stability criterion as the response amplitude that yields zero net system damping. This work clarifies the relationship between the present and traditional methods, and compares results and conclusions. The feasibility of modifying a launch vehicle response analysis of buffeting (random pressure fluctuations caused by turbulent flow) to include aeroelastic coupling effects is also explored. The aerodynamic stiffness and damping terms formulated herein are consistent with trends observed in wind-tunnel test data. It is shown, however, that the modified buffet analysis can be inaccurate, particularly when the aeroelastic coupling contribution does not dominate the system response.  相似文献   

17.
The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in computational and experimental aeroelasticity are reviewed. Computational results include the development of computationally efficient reduced-order models (ROMs) using an Euler/Navier–Stokes flow solver and the analytical derivation of Volterra kernels for a nonlinear aeroelastic system. Experimental results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the active aeroelastic wing (AAW) aircraft.  相似文献   

18.
Nonlinear airship aeroelasticity   总被引:8,自引:0,他引:8  
The aeroelastic derivatives for today's aircraft are calculated in the concept phase using a standard procedure. This scheme has to be extended for large airships, due to various nonlinearities in structural and aerodynamic behaviour. In general, the structural model of an airship is physically as well as geometrically nonlinear. The main sources of nonlinearity are large deformations and the nonlinear material behaviour of membranes. The aerodynamic solution is also included in the nonlinear problem, because the deformed airship influences the surrounding flow. Due to these nonlinearities, the aeroelastic problem for airships can only be solved by an iterative procedure. As one possibility, the coupled aerodynamic and structural dynamic problem was handled using linked standard solvers. On the structural side, the Finite-Element program package ABAQUS was extended with an interface to the aerodynamic solver VSAERO. VSAERO is based on the aerodynamic panel method using potential flow theory. The equilibrium of the internal structural and the external aerodynamic forces leads to the structural response and a trimmed flight state for the specified flight conditions (e.g. speed, altitude). The application of small perturbations around a trimmed state produces reaction forces and moments. These constraint forces are then transferred into translational and rotational acceleration fields by performing an inertia relief analysis of the disturbed structural model. The change between the trimmed flight state and the disturbed one yields the respective aeroelastic derivatives. By including the calculated derivatives in the linearised equation of motion system, it is possible to judge the stability and controllability of the investigated airship.  相似文献   

19.
基于流形切空间插值的折叠翼参数化气动弹性建模   总被引:1,自引:0,他引:1  
詹玖榆  周兴华  黄锐 《力学学报》2021,53(4):1103-1113
变体飞行器的气动弹性力学建模是当前先进飞行器设计的研究热点和难点.然而传统的气动弹性动力学建模方法对于具有结构参变特性的变体飞行器气动弹性力学研究存在建模效率低、计算复杂等问题.本研究提出了一种基于流形切空间插值的可折叠式变体机翼参数化气动弹性建模方法.首先,该方法建立若干个典型折叠角下的折叠翼结构有限元模型,通过流形...  相似文献   

20.
This paper presents the development of a code, called GEBTAero, dedicated to very flexible aircraft (VFA) aeroelasticity and especially the evaluation of aeroelastic tailoring effect on critical speeds. GEBTAero is an open source code consisting in a tightly coupling between a geometrically exact beam theory -and a finite state induced flow unsteady aerodynamic model, including an homogenisation tool. This model has been implemented in Fortran using GEBT code and optimised open source libraries with particular focus on computation speed. Besides a non linear transient dynamic simulation capacity, a particular focus is put on the fast critical speed computation strategy using a non-iterative modal approach about the geometrically non linear deformed shape of the wing with the computation of only a few aeroelastic modes. Computation speed and accuracy of this implementation is assessed using widely used aeroelastic test cases and compared successfully to other aeroelastic codes. Configurations using aeroelastic tailoring, which are the core target of this solver, are then evaluated numerically on a representative high aspect ratio anisotropic composite wing and a simple 2-ply composite laminates with both variable ply orientations. It illustrates the strong correlation between the structural bending/twisting coupling of an unbalanced composite laminates and its critical aeroelastic speed. It also shows the high sensitivity of ply orientation on the aeroelastic behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号