首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the lattice Boltzmann method is employed for simulating high-speed compressible viscous flows with a boundary layer. The coupled double-distribution-function lattice Boltzmann method proposed by Li et al. (2007) is employed because of its good numerical stability and non-free-parameter feature. The non-uniform mesh construction near the wall boundary in fine grids is combined with an appropriate wall boundary treatment for the finite difference method in order to obtain accurate spatial resolution in the boundary layer problem. Three typical problems in high-speed viscous flows are solved in the lattice Boltzmann simulation, i.e., the compressible boundary layer problem, shock wave problem, and shock boundary layer interaction problem. In addition, in-depth comparisons are made with the non-oscillatory and non-free-parameter dissipation (NND) scheme and second order upwind scheme in the present lattice Boltzmann model. Our simulation results indicate the great potential of the lattice Boltzmann method for simulating high-speed compressible viscous flows with a boundary layer. Further research is needed (e.g., better numerical models and appropriate finite difference schemes) because the lattice Boltzmann method is still immature for high-speed compressible viscous flow applications.  相似文献   

2.
To model the effect of clusters on hydrodynamics of gas and particles phases in risers, the interfacial drag coefficient is taken into account in computational fluid dynamic simulations by means of a two-fluid model. The momentum and energy balances that characterize the clusters in the dense phase and dispersed particles in the dilute phase are described by the multi-scale resolution approach. The model of cluster structure-dependent (CSD) drag coefficient is proposed on the basis of the minimization of energy dissipation by heterogeneous drag (MEDHD) in the full range of Reynolds number. The model of CSD drag coefficient is then incorporated into the two-fluid model to simulate flow behavior of gas and particles in a riser. The distributions of volume fraction and velocity of particles are predicted. Simulated results are in agreement with experimental data published in the literature.  相似文献   

3.
用格子Boltzmann方法,数值研究流过前后排列两旋转圆柱体的二维层流.用二阶精度的速度场和温度场,数值化涉及运动的曲线边界.在Reynolds数为100,Prandtl数为0.71时,研究旋转速度比的变化和不同间距的影响.在4种不同间距(3, 1.5, 0.7, 0.2)下,研究旋转速度比的不同范围.结果表明,当间距取大数值时,第1个圆柱体的升力和阻力系数,与单个圆柱体相类似;对所有间距(除间距3以外),第2个圆柱体的升力系数,随着角速度的增加而减小,而阻力系数反而增加.圆柱体表面平均周期Nusselt数的结果表明,当两圆柱体间距小且角速度又低时,热传导是主要的传热机理,而当间距大且角速度又高时,对流是主要的传热机理.  相似文献   

4.
A lattice Boltzmann model for blood flows is proposed. The lattice Boltzmann Bi-viscosity constitutive relations and control dynamics equations of blood flow are presented. A non-equilibrium phase is added to the equilibrium distribution function in order to adjust the viscosity coefficient. By comparison with the rheology models, we find that the lattice Boltzmann Bi-viscosity model is more suitable to study blood flow problems. To demonstrate the potential of this approach and its suitability for the application, based on this validate model, as examples, the blood flow inside the stenotic artery is investigated.  相似文献   

5.
The rheological stress recovery (RSR) method was proposed to measure the in-situ stress of rock mass with time-dependent property by drilling a hole and embedding transducers into it. To solve the stress distribution on the transducer, a viscoelastic axisymmetric plane model was firstly built considering an arbitrary stress boundary condition. The analytical solution was developed by dividing the stress boundary conditions into axisymmetric and anti-axisymmetric combining with Laplace transformation technique. The explicit stress expressions on interfaces of rock–grout and grout–transducer was obtained using Burgers and Boltzmann viscoelastic models, respectively. Furthermore, the variations of transducer surface final stress, which is related to rheological time, geometric and mechanical properties of rock mass, grout parameter, and transducer materials, was proposed for calculating the measured stress by RSR method. For both of Burgers and Boltzmann viscoelastic model, final stress increases as elastic modulus ratio increases when elastic modulus ratio under 20, and the final stress could be ignored when diameter ratio is over 1.4. The rheological time increases with increasing of viscosity coefficient and the modulus ratio, but decreases as the shear modulus increases. The results in here provide a simple method for stress analyzing and have great value for understanding the relationship between the initial stress of rock mass and the measured stress for the RSR method.  相似文献   

6.
Turbulent air flows over developing wind waves in the air-sea boundary layer are numerically simulated without considering wave breaking. Influences of wind waves on air flows are considered using a model of significant wave and surface roughness, with a formula proposed for calculating the surface roughness. κ-ε model is adopted to simulate turbulent flows. The results of the drag coefficient and turbulence characteristics agree well with the observations. Project supported by the National Natural Science Foundation of China (Grant No. 19332010).  相似文献   

7.
A combined immersed boundary–lattice Boltzmann approach is used to simulate the dynamics of elastic membrane immersed in a viscous incompressible flow. The lattice Boltzmann method is utilized to solve the flow field on a regular Eulerian grid, while the immersed boundary method is employed to incorporate the fluid–membrane interaction with a Lagrangian representation of the deformable immersed boundary. The distinct feature of the method used here is to employ the combination of simple Peskin's IBM and standard LBM. In order to obtain more accurate and truthful solutions, however, a non-uniform distribution of Lagrangian points and a modified Dirac delta function are used. Two test cases are presented. In the first case, we consider a vesicle suspended in a simple shear flow commonly known as tank-treading motion. The computed results were compared with experiments, which showed reasonably good agreement. For the second test case, we consider individual healthy (soft) and sick (stiff) RBCs suspended in a shear flow. The simulation results demonstrated that elastic deformation plays an important role in overall RBC motions characterized as tank-treading and tumbling motions, in which the natural state of the elastic membrane is an essential consideration. In addition, the results confirm that the combination of the immersed boundary and lattice Boltzmann methods permits the simulation of the complex biological phenomena.  相似文献   

8.
The thermal-creep flow of a binary gas mixture over a plane wall is investigated analytically on the basis of the linearized Boltzmann equation of BGK type under the boundary condition of Maxwell's type or diffuse-specular reflection type. By an accurate analysis of the Knudsen layer formed near the wall, the Knudsen-layer structure of the velocity field has been clarified and, hence, the velocity distribution over the whole flow region is given explicitly together with the macroscopic slip coefficient. For future comparison with experimental data which may become available, the values of the slip coefficient of thermal-creep flow for several pairs of gases, Ne-Ar, He-Ne, He-Ar, N2-Ar and N2-O2 are also given and listed in Table together with the values calculated based on the result given by other authors.  相似文献   

9.
The present article investigates the overall bed permeability of an assemblage of porous particles. For the bed of porous particles, the fluid-particle system is represented as an assemblage of uniform porous spheres fixed in space. Each sphere, with a surrounding envelope of fluid, is uncoupled from the system and considered separately. This model is popularly known as cell model. Stokes equations are employed inside the fluid envelope and Brinkman equations are used inside the porous region. The stress jump boundary condition is used at the porous-liquid interface together with the continuity of normal stress and continuity of velocity components. On the surface of the fluid envelope, three different possible boundary conditions are tested. The obtained expression for the drag force is used to estimate the overall bed permeability of the assemblage of porous particles and the behavior of overall bed permeability is analyzed with various parameters like modified Darcy number (Da*), stress jump coefficient (??), volume fraction (??), and effective viscosity.  相似文献   

10.
The modified Reynolds mean motion equation of turbulent fiber suspension and the equation of probability distribution function for mean fiber orientation are firstly derived. A new successive iteration method is developed to calculate the mean orientation distribution of fiber, and the mean and fluctuation-correlated quantities of suspension in a turbulent channel flow. The derived equations and successive iteration method are verified by comparing the computational results with the experimental ones. The obtained results show that the flow rate of the fiber suspension is large under the same pressure drop in comparison with the rate of Newtonian fluid in the absence of fiber suspension. Fibers play a significant role in the drag reduction. The amount of drag reduction augments with increasing of the fiber mass concentration. The relative turbulent intensity and the Reynolds stress in the fiber suspension are smaller than those in the Newtonian flow, which illustrates that the fibers have an effect on suppressing the turbulence. The amount of suppression is also directly proportional to the fiber mass concentration.  相似文献   

11.
A non-iterative immersed boundary lattice Boltzmann method (IB-LBM) is proposed in this work for the simulation of fluid–solid flows. In the scheme, the interface is implemented by the correction of the neighboring distribution functions, similar to that of the LBM. Such treatment of the boundary is contrary to the traditional methods, where the interface is usually modeled as a generator of external force. Therefore, an advantage of the present method is to remove the efforts to evaluate the IB force and then incorporate it into the governing equation. Furthermore, an adjustment parameter is introduced to the immersed boundary scheme, which ensures the interpolated distribution functions derive the desired velocity at the boundary. Compared with the solution of a large boundary matrix and the multiple force correction that generally used in the previous studies, the present method is simpler and efficient without any iterative procedures. Those above-mentioned features make the present scheme based on the correction of the distribution function, with the enforcement of no-slip boundary condition. Simulation of flow past a fixed cylinder shows that there is no penetration of streamlines to the cylinder surface, indicating a well enforcement of the no-slip boundary condition. This scheme is further validated in the flows of a cylinder oscillating in a quiescent fluid, circular and elliptical particles settling in a channel. The results have good agreement with those data available in the literature.  相似文献   

12.
《Applied Mathematical Modelling》2014,38(5-6):1710-1728
In this paper, a lattice Boltzmann model for the Maxwell’s equations is proposed by taking separate sets of distribution functions for the electric and magnetic fields, and a lattice Boltzmann model for the Maxwell vorticity equations with third order truncation error is proposed by using the higher-order moment method. At the same time, the expressions of the equilibrium distribution function and the stability conditions for this model are given. As numerical examples, some classical electromagnetic phenomena, such as the electric and magnetic fields around a line current source, the electric field and equipotential lines around an electrostatic dipole, the electric and magnetic fields around oscillating dipoles are given. These numerical results agree well with classical ones.  相似文献   

13.
An analytical version of the discrete-ordinates method (the ADO method) is used to establish concise and particularly accurate solutions to the problem of sound-wave propagation in a rarefied gas. The analysis and the numerical work are based on a rigorous form of the linearized Boltzmann equation (for rigid-sphere interactions), and in contrast to many other works formulated (for an infinite medium) without a boundary condition, the solution reported here satisfies a boundary condition that models a diffusely-reflecting vibrating plate. In addition and in order to investigate the effect of kinetic models, solutions are developed for the BGK model, the S model, the Gross-Jackson model, as well as for the (newly defined) MRS model and the CES model. While the developed numerical results are compared to available experimental data, emphasis in this work is placed on the solutions of the problem of sound-wave propagation as described by the linearized Boltzmann equation and the five considered kinetic models. Received: November 22, 2004; revised: February 24, 2005  相似文献   

14.
In the present paper, within the framework of a piecewise homogenous body model, with the use of the exact three-dimensional equations of elasticity theory, a method proposed earlier is developed for investigating the stress distribution caused by two neighboring out-of-plane locally cophasally curved fibers located along two parallel planes in an infinite elastic body. The body is loaded at infinity by uniformly distributed normal forces in the direction of fiber location. The self-equilibrated normal and shear stresses caused by the curved fibers are analyzed, and the influences of interaction between the fibers and of the geometric nonlinearity on the distribution of these stresses are studied. Numerical results for this interaction are obtained.  相似文献   

15.
We present a spline approximation method for a piece of a surface where jump discontinuities occur along curves. The data for the surface is assumed to be Fourier coefficients which are limited in order and possibly contaminated with noise. The support of the approximation is bounded by three sides of a rectangle with a fourth boundary possibly curved. Discontinuities of the surface may occur across the curved side and linear sides adjacent to it. The approximation uses a small number of lines through the support and parallel to the straight boundary lines that are adjacent to the curve. Along each line a one-dimensional spline approximation is done for a section of the surface over the line. This approximation uses two-dimensional Fourier coefficient data, localizing spline functions, and a technique which we developed earlier for one-dimensional analogues of the problem. We use a spline quasi-interpolation scheme to create a surface approximation from the section approximations. The result is accurate even when the surface is discontinuous across the curved boundary and adjacent side boundaries.  相似文献   

16.
Within the framework of a piecewise homogeneous body model, with the use of the three-dimensional geometrically nonlinear exact equations of the theory of elasticity, the method developed for determining the stress distribution in nanocomposites with unidirectional locally curved covered nanofibers is used to investigate the normal stresses acting along nanofibers. The investigation is carried out for an infinite elastic body containing a single locally curved covered nanofiber in the case where there exists a bond covering cylinder of constant thickness between the nanofiber and the matrix material. It is assumed that the body is loaded at infinity by uniformly distributed normal forces in the fiber direction. Upon formulation and mathematical solution of the boundary value problem, the boundary form perturbation method is used. Numerical results for the stress distribution in the body and the influence of geometrical nonlinearity on this distribution are presented and interpreted.  相似文献   

17.
The nonlinear sine-Gordon equation arises in various problems in science and engineering. In this paper, we propose a numerical model based on lattice Boltmann method to obtain the numerical solutions of two-dimensional generalized sine-Gordon equation, including damped and undamped sine-Gordon equation. By choosing properly the conservation condition between the macroscopic quantity $u_t$ and the distribution functions and applying the Chapman-Enskog expansion, the governing equation is recovered correctly from the lattice Boltzmann equation. Moreover, the local equilibrium distribution function is obtained. The numerical results of the first three examples agree well with the analytic solutions, which indicates the lattice Boltzmann model is satisfactory and efficient. Numerical solutions for cases involving the most known from the bibliography line and ring solitons are given. Numerical experiments also show that the present scheme has a good long-time numerical behavior for the generalized sine-Gordon equation. Moreover, the model can also be applied to other two-dimensional nonlinear wave equations, such as nonlinear hyperbolic telegraph equation and Klein-Gordon equation.  相似文献   

18.
In order to find a simple and efficient simulation for plasma spray process, an attempt of modeling was made to calculate velocity and temperature field of the plasma jet by hexagonal 7-bit lattice Boltzmann method (LBM) in this paper. Utilizing the methods of Chapman–Enskog expansion and multi-scale expansion, the authors derived the macro equations of the plasma jet from the lattice Boltzmann evolution equations on the basis of selecting two opportune equilibrium distribution functions. The present model proved to be valid when the predictions of the current model were compared with both experimental and previous model results. It is found that the LBM is simpler and more efficient than the finite difference method (FDM). There is no big variation of the flow characteristics, and the isotherm distribution of the turbulent plasma jet is compared with the changed quantity of the inlet velocity. Compared with the velocity at the inlet, the temperature at the inlet has a less influence on the characteristics of plasma jet.  相似文献   

19.
R. Groll  H. J. Rath 《PAMM》2008,8(1):10595-10596
Modelling micro channel flows momentum and heat diffusion / convection are recent parameters modelling the molecule velocity distribution. Macroscopic models describe velocity and energy / enthalpie with integrals of mass increments. Using microscopic models motion and forces of a molecular flow have to be computed by models of physical properties, whose are described by statistical power moments of the molecule velocity. Therefore dilute flows have to be investigated in small channels with a mean free path length of molecules higher than the channel width of the the micro channel itself (λ0H0). Modelling this process by a continuous flow the boundary conditions have to be modified (e.g. [6]). The present model uses the statistical approximation of the molecule velocity distribution to simulate the behaviour of this discrete flow with a weighted averaged molecule velocity ∼ξi, its standard deviation σ and the characterisic molecule collision rate z. The number density N per volume V near one position is used for the weighting factor averaging method describing the mean molecule velocity. The present model is validated computing Poiseuille and Couette flows with different Knudsen numbers. Showing the advantages of the present model the simulation results are compared with simulation results of the wall–distance depending diffusivity model of Lockerby and Reese [4] and BGK results of a Lattice–Boltzmann simulation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A numerical model has been developed that employs the penalty function finite element technique to solve the vertically averaged hydrodynamic and turbulence model equations for a water body using isoparametric elements. The full elliptic forms of the equations are solved, thereby allowing recirculating flows to be calculated. Alternative momentum dispersion and turbulence closure models are proposed and evaluated by comparing model predictions with experimental data for strongly curved subcritical open channel flow. The results of these simulations indicate that the depth-averaged two-equation k-ε turbulence model yields excellent agreement with experimental observations. In addition, it appears that neither the streamline curvature modification of the depth-averaged k-ε model, nor the momentum dispersion models based on the assumption of helicoidal flow in a curved channel, yield significant improvement in the present model predictions. Overall model predictions are found to be as good as those of a more complex and restricted three-dimensional model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号