首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
用XPS对不同凡的Gd-Ba-Cu-O超导膜做了定量、角分布、成象和离子剥蚀纵深分析.结果表明:样品表面都存在Ba富集和Gd短缺,表面原子微观分布不均匀;表面和纵深都存在含C物质污染;与Tc≥87K的样品比较,Tc≤77K的膜表面对应于非超导相的Ba和O原子浓度最高,膜的纵深处的原子组成仍偏离化学计量,而且膜表面和纵深处的含C物污染最严重.  相似文献   

2.
用XPS和XRD表征了Ba-K-Bi-O超导体熔盐电结晶的阳极和阴 极产物,用SEM分析了Ba-K-Bi-O单生长形态。结果表明,阳极产物是Ba-K-Bi-O超导体单晶,以台阶式方式生长。-K-B-  相似文献   

3.
An Ar Gas Cluster Ion Beam (GCIB) has been shown to remove previous Ar+ ion beam‐induced surface damage to a bulk polyimide (PI) film. After removal of the damaged layer with a GCIB sputter source, XPS measurements show minor changes to the carbon, nitrogen and oxygen atomic concentrations relative to the original elemental bulk concentrations. The GCIB sputter depth profiles showed that there is a linear relationship between the Ar+ ion beam voltage within the range from 0.5 to 4.0 keV and the dose of argon cluster ions required to remove the damaged layer. The rate of recovery of the original PI atomic composition as a function of GCIB sputtering is similar for carbon, nitrogen and oxygen, indicating that there was no preferential sputtering for these elements. The XPS chemical state analysis of the N 1s spectra after GCIB sputtering revealed a 17% damage ratio of altered nitrogen chemical state species. Further optimization of the GCIB sputtering conditions should lead to lower nitrogen damage ratios with the elemental concentrations closer to those of bulk PI. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A novel chemical route for deposition of zinc selenide quantum dots in thin film form is developed. The deposited films are characterized with very high purity in crystallographic sense, and behave as typical intrinsic semiconductors. Evolution of the average crystal size, lattice constant, lattice strain and the optical properties of the films upon thermal treatment is followed and discussed. The band gap energy of as-deposited ZnSe films is blue-shifted by ≈0.50 eV with respect to the bulk value, while upon annealing treatment it converges to 2.58 eV. Two discrete electronic states which originate from the bulk valence band are observed in the UV-VIS spectra of ZnSe 3D quantum dots deposited in thin film form via allowed electronic transitions to the 1S electronic state arising from the bulk conduction band—appearing at 3.10 and 3.50 eV. The splitting between these two states is approximately equal to the spin-orbit splitting in the case of bulk ZnSe. The electronic transitions in the case of non-quantized annealed films are discussed in terms of the direct allowed band-to-band transitions with the spin-orbit splitting of the valence band of 0.40 eV. The effective mass approximation model (i.e., the Brus model) with the static relative dielectric constant of bulk ZnSe fails to predict correctly the size dependence of the band gap energy, while only a slight improvement is obtained when the hyperbolic band model is applied. However, when substantially smaller value for εr (2.0 instead of 8.1) is used in the Brus model, an excellent agreement with the experimental data is obtained, which supports some earlier indications that the quantum dots εr value could be significantly smaller than the bulk material value. The ionization energy of a deep donor impurity level calculated on the basis of the temperature dependence of the film resistivity is 0.82 eV at 0 K.  相似文献   

5.
X-ray photoelectron spectroscopy (XPS) is used to monitor the heterogeneous reaction of hydroxyl radicals (OH) and ozone with thin films (~5 ?) of coronene. Detailed elemental and functional group analysis of the XPS spectra reveals that there is a competition between the addition of oxygenated functional groups (functionalization) and the loss of material (volatilization) to the gas phase. Measurements of the film thickness and elemental composition indicate that carbon loss is as important as the formation of new oxygenated functional groups in controlling how the oxygen-to-carbon ratio (O/C) of the coronene film evolves during the surface reaction. When the O/C ratio of the film is small (~0.1) the addition of functional groups dominates changes in film thickness, while for more oxygenated films (O/C > 0.3) carbon loss is an increasingly important reaction pathway. Decomposition of the film occurs via the loss of both carbon and oxygen atoms when the O/C ratio of the film exceeds 0.5. These results imply that chemically reduced hydrocarbons, such as primary organic aerosol, age in the atmosphere by forming new oxygenated functional groups, in contrast to oxygenated secondary organic aerosol, which decompose by a heterogeneous loss of carbon and/or oxygen.  相似文献   

6.
Polyphosphazenes are a class of hybrid organic-inorganic macromolecules with high thermo-oxidative stability and good solubility in many solvents. Fluoroalkoxy phosphazene polymers also have high surface hydrophobicity. A method is described to tune this surface property while maintaining the advantageous bulk materials characteristics. The polyphosphazene single-substituent polymer, poly[bis(2,2,2-trifluoroethoxy)phosphazene], with flat film, fiber mat, or bead mat morphology was surface functionalized using an atmospheric plasma treatment with oxygen, nitrogen, methane, or tetrafluoromethane/hydrogen gases. Surface chemistry changes were detected by static water contact angle (WCA) measurements as well as X-ray photon spectroscopy (XPS). It was found that changes in the WCA of as much as 150 degrees occurred, accompanied by shifts in the ratio of elements on the polymer surface as detected by XPS. Overall this plasma technique provides a convenient method for the generation of specific surface characteristics while maintaining the hydrophobicity of the bulk material.  相似文献   

7.
氮化碳(graphitic carbon nitride,g-CN)作为一种非金属半导体材料已被广泛应用于多种能源相关领域研究中。目前由于制备高质量g-CN薄膜的困难,大大限制了其在实际器件上的应用。本文中,我们报道了一种可制备高光学质量gCN薄膜的方法:即由三聚氰胺先通过热聚合制备本体g-CN粉末,再由本体g-CN粉末经过气相沉积在ITO导电玻璃或钠钙玻璃基底上制备g-CN薄膜。扫描电子显微镜和原子力显微镜的测量结果表明在ITO玻璃基底上形成的g-CN薄膜形貌结构均一且致密,厚度约为300nm。扫描电镜能量色散能谱和X射线光电子能谱测量结果表明在ITO玻璃基底上制备的g-CN薄膜的化学组成与本体g-CN粉末的化学组成基本一致。同时,我们发现制备的g-CN薄膜和本体g-CN粉末一样在光照射下可以有效降解亚甲基蓝染料。此外,我们还测量了制备的g-CN薄膜的稳态吸收光谱、稳态荧光光谱、荧光寿命和价带谱,并运用吸收光谱和价带谱数据确定了其能带结构。  相似文献   

8.
Using a combination of TEM and XPS, we made an analysis of the complex high-temperature annealing effect on ultrathin titanium deuteride (TiD y ) films evaporated on a Si(100) substrate and covered by an ultrathin palladium layer. Both the preparation and annealing of the TiD y /Pd bi-layer films were performed in situ under UHV conditions. It was found that the surface and bulk morphology of the bi-layer film as well as that of the Si substrate material undergo a microstructural and chemical conversion after annealing and annealing-induced deuterium evolution from the TiD y phase. Energy-filtered TEM (EFTEM) mapping of cross-section images and argon ion sputter depth profiling XPS analysis revealed both a broad intermixing between the Ti and Pd layers and an extensive inter-diffusion of Si from the substrate into the film bulk area. Segregation of Ti at the Pd top layer surface was found to occur by means of angle-resolved XPS (ARXPS) and the EFTEM analyses. Selected area diffraction (SAD) and XPS provided evidence for the formation of a new PdTi2 bimetallic phase within the top region of the annealed film. Moreover, these techniques allowed to detect the initial stages of TiSi phase formation within the film–substrate interlayer.  相似文献   

9.
Graft polymerization of acrylamide (AAm) was performed onto the surface of a poly(ethylene terephthalate) (PET) film with the simultaneous UV irradiation method but using no photosensitizer and without degassing. To examine whether polyacrylamide (PAAm) was introduced into the bulk place of PET film by the surface graft polymerization, an x-ray photoelectron spectroscopic (XPS) study was performed on the PAAm-grafted PET films. The distribution of grafted PAAm chains on and in the PET films was estimated from the PAAm/PET ratio calculated from the XPS spectra of PET films with different amounts of grafted PAAm. The results clearly demonstrate that graft polymerization has actually occurred not merely on the outermost surface but also within the thin surface region of the PET film. In addition, the XPS analysis revealed that the PET component was always present in the grafted surface region by a mole fraction of 0.1 to 0.05 even when the amount of PAAm grafted was larger than 10 μg/cm2.  相似文献   

10.
EuS nanocrystals (NCs) were doped with Gd resulting in an enhancement of their magnetic properties. New EuS and GdS single source precursors (SSPs) were synthesized, characterized, and employed to synthesize Eu(1-x)Gd(x)S NCs by decomposition in oleylamine and trioctylphosphine at 290 °C. The doped NCs were characterized using X-ray diffraction, transmission electron microscopy, and scanning transmission electron microscopy, which support the uniform distribution of Gd dopants through electron energy loss spectroscopy (EELS) mapping. X-ray absorption spectroscopy (XAS) revealed the dopant ions in Eu(1-x)Gd(x)S NCs to be predominantly Gd(3+). NCs with a variety of doping ratios of Gd (0 ≤ x < 1) were systematically studied using vibrating sample magnetometry and the observed magnetic properties were correlated with the Gd doping levels (x) as quantified with ICP-AES. Enhancement of the Curie temperature (T(C)) was observed for samples with low Gd concentrations (x ≤ 10%) with a maximum T(C) of 29.4 K observed for NCs containing 5.3% Gd. Overall, the observed T(C), Weiss temperature (θ), and hysteretic behavior correspond directly to the doping level in Eu(1-x)Gd(x)S NCs and the trends qualitatively follow those previously reported for bulk and thin film samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号