首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation and mineralization of orange-G (OG) in aqueous solutions by means of ultrasound irradiation at a frequency of 213 kHz and its combination with a heterogeneous photocatalyst (TiO2) were investigated. The effects of various operational parameters such as, the concentration of the dye and solution pH on the degradation efficiency were studied. The degradation of the dye followed first-order like kinetics under the conditions examined. The sonolytic degradation of OG was relatively higher at pH 5.8 than that at pH 12. However, an alkaline pH was favoured for the photocatalytic degradation of OG using TiO2. Total organic carbon (TOC) measurements were also carried out in order to evaluate the mineralization efficiency of OG using sonolysis, photocatalysis and sonophotocatalysis. The hybrid technique of sonophotocatalytic degradation was compared with the individual techniques of photocatalysis and sonolysis. A simple additive effect was observed during the sonophotocatalytic oxidation of OG using TiO2 indicating that the combined treatment offers no synergistic enhancement. TOC results also support the additive effect in the dual treatment process.  相似文献   

2.
The degradation process of methyl orange solution by dielectric barrier discharge (DBD) plasma using a board-DBD reactor was studied. The percentage destruction reached 99% after 35 min treatment. The pH value of the methyl orange solution decreased with the treatment time and it reached a constant value when discharged for 20 min. The COD value of the methyl orange solution decreased by 57.9% for 30 min treatment. The degradation path was suggested based on the analysis of the molecular structure of methyl orange, intermediate products and the molecular bond energies.  相似文献   

3.
Rutile and anatase titanium dioxide (TiO(2)) powders were used as sonocatalysts for the degradation of methyl orange which was used as a model compound. Ultrasound was used as an irradiation source. It was found that the sonocatalytic degradation ratios of methyl orange in the presence of TiO(2) powder were much better than ones without any TiO(2), but the sonocatalytic activity of rutile TiO(2) particles was obviously higher than that of anatase TiO(2) particles. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results show that the best degradation ratio of methyl orange can be obtained when the experimental conditions of the initial methyl orange concentration of 10 mg/l, rutile TiO(2) added amount of 500 mg/l, ultrasonic frequency of 40 kHz, output power of 50 W, pH=3.0 and 40 degrees C within 150 min were adopted. In addition, the catalytic activity of reused rutile TiO(2) catalyst was also studied and found to be better than new rutile TiO(2) catalyst sometimes. All experimental results indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO(2) powder was an advisable choice for treating non- or low-transparent organic wastewaters.  相似文献   

4.
The intensive consumption of pharmaceuticals and drugs in the last decades has led to their increased concentrations in wastewaters from industrial sources. The present paper deals, for the first time, with the sonochemical degradation and mineralization of furosemide (FSM) in water. FSM is a potent loop diuretic used to treat fluid build-up due to heart failure, liver scarring, or kidney disease. The influence of several operating parameters such as acoustic intensity, ultrasonic frequency, initial FSM concentration, solution’s pH, nature of the dissolved gas (Ar, air and N2) and radical scavengers (2-propanol and tert-butanol) on the oxidation of FSM was assessed. The obtained results showed that the degradation rate of the drug increased significantly with the increase of the acoustic intensity in the range of 0.83 to 4.3 W cm−2 and decreased with the augmentation of the frequency in the range of 585–1140 kHz. It was also found that the initial rate of the sonolytic degradation of FSM increased with the increase of its initial concentration (2, 5, 10, 15 and 20 mg/L). The most significant degradation was achieved in acidic conditions at pH 2, while in terms of saturating gas, the rate of FSM degradation decreased in the order of Ar > air > N2. The FSM degradation experiments with radical scavengers showed that the diuretic molecule degraded mainly at the interfacial region of the bubble by hydroxyl radical attack. Additionally, in terms of acoustic conditions, the sono-degradation of 30.24 µmol L-1 of FSM solution demonstrate an optimal performance at 585 kHz and 4.3 W/cm2, the results indicated that even if the ultrasonic action eliminated the total concentration of FSM within 60 min, a low degree of mineralization was obtained due to the by-products formed during the sono-oxidation process. The ultrasonic process transforms FSM into biodegradable and environmentally friendly organic by-products that could be treated in a subsequent biological treatment. Besides, the efficiency of the sonolytic degradation of FSM in real environmental matrices such as natural mineral water and seawater was demonstrated. Consequently, the sonochemical advanced oxidation process represent a very interesting technique for the treatment of water contaminated with FSM.  相似文献   

5.
The degradation of 2-chlorophenol and of the two azo dyes acid orange 8 and acid red 1 in aqueous solution was investigated kinetically under sonolysis at 20 kHz and under photocatalysis in the presence of titanium dioxide particles, as well as under simultaneous sonolysis and photocatalysis, i.e. sonophotocatalysis. The influence on the degradation and mineralisation rates of the initial substrate concentration and of the photocatalyst amount was systematically investigated to ascertain the origin of the synergistic effect observed between the two degradation techniques. The evolution of hydrogen peroxide during kinetic runs was also monitored. Small amounts of Fe(III) were found to affect both the adsorption equilibria on the semiconductor and the degradation paths. Ultrasound may modify the rate of photocatalytic degradation by promoting the deaggregation of the photocatalyst, by inducing the desorption of organic substrates and degradation intermediates from the photocatalyst surface and, mainly, by favouring the scission of the photocatalytically and sonolytically produced H(2)O(2), with a consequent increase of oxidising species in the aqueous phase.  相似文献   

6.
电晕放电等离子体技术是近年发展起来的一种新型高级氧化工艺,因其处理效果好、操作简单、占地面积小的特点在印染废水处理领域得到了广泛应用。目前因大部分有机污染物的降解机理不详,该技术尚处于探索阶段。因此,为了尽早将电晕放电等离子体技术应用于工业印染废水的处理,不同污染物降解机理的研究对该技术的工业化和产业化应用具有重要意义。至今,电晕放电等离子体技术对研究较多的染料的降解效果均较好,然而,是否适合所有染料的降解有待进一步研究。采用电晕放电等离子体技术处理三苯甲烷类染料甲基蓝,研究了溶液的初始浓度对甲基蓝紫外-可见光谱中芳香环的降解率、发色基团吸光度变化的影响,测定了溶液的浓度、总有机碳(TOC)、总氮(TN)、pH值等指标随着放电时间的变化,并对其相关性进行了分析。结合紫外-可见光谱(UV-Vis)、三维荧光光谱(3D-fluorescence)和傅里叶变换红外光谱(FTIR)三种光谱学手段分析了电晕放电降解甲基蓝过程溶液的颜色、荧光物质和官能团变化,分析了电晕放电降解甲基蓝30 min后生成的中间产物。结果表明:电晕放电等离子体降解甲基蓝过程,溶液的浓度随着放电时间的延长逐渐减小,表明该技术对甲基蓝溶液有一定的降解能力;降解过程高压电极放电击穿含有大量氮气的空气产生N,NO·,N+2等含氮高活性粒子,这些粒子通过扩散作用迁移至液相,使得溶液中TN含量在整个降解过程逐渐升高;另有部分含氮高活性粒子与钨钢针电极溶出的C元素键合生成发色的CN双键,使得溶液中的总有机碳在放电5 min时有所升高。延长反应时间产生的高活性粒子与溶液中的有机物(甲基蓝及中间产物)继续作用,部分有机物矿化生成CO2,引起溶液中TOC含量的下降。电晕放电相同时间内产生的活性粒子数量相当,增大甲基蓝浓度,未被降解的甲基蓝分子越多,导致甲基蓝降解率的减小。电晕放电过程甲基蓝分子之间的聚合与发色CN双键的生成共同促使甲基蓝发色基团吸光度在放电5 min时达到最大;且甲基蓝溶液的初始浓度越高,吸光度(A5-A0)升高的越多。概括来说,甲基蓝结构中发色CN双键的存在是电晕放电等离子体降解甲基蓝过程溶液颜色加深再变浅的主要原因。反应过程羟基自由基的消耗导致放电5 min时溶液的pH值升高;随着反应的进行溶液中生成的硝酸及小分子酸增强了溶液的酸性,导致pH值降低。三维荧光光谱结果表明,甲基蓝降解过程出现了三类明显的荧光峰,位于EX/EM=310~320/430~450,EX/EM=240~250/320~340和EX/EM=280/340,分别代表腐殖酸类物质、芳香族蛋白质和溶解性微生物代谢副产物。甲基蓝溶液降解前的荧光物质主要为腐殖酸类,随着降解时间的延长,腐殖酸类物质首先降解生成了芳香族蛋白质,进一步降解产生可溶性微生物代谢副产物。比较电晕放电前后甲基蓝溶液的红外光谱图和红外分峰图发现,甲基蓝结构中N-H键3 432.8 cm-1处不对称伸缩振动峰红移了0.3 cm-1,烯烃和苯环上C-H键2 975.9 cm-1处的伸缩振动峰向高波数偏移了0.5 cm-1,1 638.7 cm-1处RCHCHR的双键伸缩振动位置蓝移了3.2 cm-1,芳仲胺的C-N伸缩振动峰1 341.6 cm-1向高波数偏移了1.3 cm-1,磺酸基SO的伸缩振动峰1 121.1和1 034.3 cm-1分别红移了3.8和13 cm-1,甲基蓝结构中的环外CC双键与CN双键吸收峰消失,在1 692.4和1 400.4 cm-1处分别出现了CO和NO的伸缩振动吸收峰,产生了2,5-环己二烯-1,4-二酮、对硝基苯磺酸钠和芳香酮类等中间产物。该结果对于利用电晕放电等离子体技术处理甲基蓝废水具有重要的理论意义和实用价值。  相似文献   

7.
Treatment of real textile industry effluent using photocatalysis, sonocatalysis, sonophotocatalysis and H2O2 assisted sonophotocatalysis have been studied based on the use of Ce-TiO2 nanocatalyst synthesized using sonochemical co-precipitation method. Characterization studies of the obtained catalyst revealed crystallite size as 1.44 nm with particles having spherical morphology. A shift of the absorption edge to the visible light range was also observed in UV–Vis diffuse reflectance spectra (UV-DRS) analysis. The effects of different operational parameters viz catalyst dose (0.5 g/L-2 g/L), temperature (30 °C-55 °C) and pH (3–12) on the COD reduction were studied. The reduction in the COD was higher at lower pH and the optimum temperature established was 45 °C. It was also elucidated that the required catalyst dose was lesser in combined sonophotocatalysis when compared with individual photocatalysis and sonocatalysis. Combination of processes and addition of oxidants increased the COD reduction with the sonophotocatalytic oxidation combined with H2O2 treatment showing the best results for COD reduction (84.75%). The highest reduction in COD for photocatalysis was only 45.09% and for sonocatalysis, it was marginally higher at 58.62%. The highest reduction in COD achieved by sonophotocatalysis was 64.41%. Toxicity tests coupled with Liquid Chromatography Mass Spectrometry (LC-MS) analysis revealed that there were no additional toxic intermediates added to the system during the treatment. Kinetic study allowed establishing that generalized kinetic model fits the experimental results well. Overall, the combined advanced oxidation processes showed better results than the individual processes with higher COD reduction and lower requirement of the catalyst.  相似文献   

8.
In this study, carbon nanotubes (CNTs)/TiO2 composite were prepared and the sonophotocatalytic activity of CNTs/TiO2 nanoparticles was investigated, in which methyl orange (MO) was chosen as an object. The results indicate that the photocatalytic efficiency of CNTs/TiO2 remarkable increases in the presence of ultrasound, and the sonophotocatalysis process followed a first-order kinetics. The kinetic constant of CNTs/TiO2 for the MO degradation is 2.2 times higher than that of P25, which indicated that the sonophotocatalytic ability of CNTs/TiO2 is obviously higher than P25 powder.  相似文献   

9.
金属离子对纳米TiO2悬浊液的光催化性能影响的光谱研究   总被引:4,自引:0,他引:4  
以钛氧有机物为前驱体,利用微乳液法制备了纳米TiO2微晶。用X射线衍射(XRD)和红外光谱(FTIR)等测试技术对产物进行了表征,并就纳米TiO2悬浊液中加入金属离子后光催化降解甲基橙溶液进行了初步的研究。光谱分析表明,纳米TiO2悬浊液中加入Bi3 离子后对甲基橙溶液的光催化降解有很大的促进作用,Bi3 与TiO2质量比为1∶8及TiO2的浓度为1.6g·L-1时光催化活性最佳。  相似文献   

10.
The sonolytic degradation of the textile dye martius yellow, also known as either naphthol yellow or acid orange 24, was studied at various initial concentrations in water. The degradation of the dye followed first-order kinetics under the conditions examined. Based on gas chromatographic results and sonoluminescence measurements of sonicated aqueous solutions of the dye, it is concluded that pyrolysis does not play a significant role in its degradation. The chromatographic identification of hydroxy added species indicates that an OH radical induced reaction is the main degradation pathway of the dye. Considering the non-volatility and surface activity of the dye, the degradation of the dye most probably takes place at the bubble/solution interface. The quantitative and qualitative formation of the degradation intermediates and final products were monitored using HPLC and ESMS. The analytical results suggest that the sonolytic degradation of the dye proceeds via hydroxylation of the aryl ring and also by C-N bond cleavage of the chromophoric ring, either through OH radical attack or through another unidentified process. The identification of various intermediates and end products also imply that the degradation of martius yellow proceeds through multiple reaction pathways. Total organic carbon (TOC) analyses of the dye solutions at various times following sonication revealed that sonolysis was effective in the initial degradation of the parent dye but very slow in achieving mineralization. The slow rate of mineralization is likely to be due to the inability of many of the intermediate products such as, the carboxylic acids, to accumulate at the bubble (air/water) interface and undergo decomposition due to their high water solubility (low surface activity).  相似文献   

11.
The sonophotocatalytic degradation of basic blue 9 industrial textile dye has been studied in the presence of ultrasound (20 kHz) over a TiO(2) slurry employing an UV lamp (15 W, 352 nm). It was observed that the color removal efficiency was influenced by the pH of the solution, initial dye concentration and TiO(2) amount. It was found that the dye degradation followed apparent first order kinetics. The rate constant increased by decreasing dye concentration and was affected by the pH of the solution with the highest degradation obtained at pH 7. The first order rate constants obtained with sonophotocatalysis were twofold and tenfold than those obtained under photocatalysis and sonolysis, respectively. The chemical oxygen demand was abated over 80%.  相似文献   

12.
The photocatalytic activity of silver deposited Degussa P25 titanium dioxide (Ag-DP25) in the photodegradation of methyl orange (MO) was investigated. The photocatalysts were characterized using PXRD, SEM, EDX, FTIR and UV-vis spectrophotometer. The obtained results show that the silver (Ag0) deposited TiO2 exhibited visible light plasmon absorption band. The degradation experiment reveals that the catalytic property of Ag-DP25 in the degradation of MO is more efficient than that of commercially available Degussa P25 TiO2 (DP25) samples. The improvement of Ag-DP25 catalyst efficiency strongly depends on the content of silver (Ag) deposits. The present study shows that the degradation process is dominated by Ag-TiO2 photocatalytic system, complying with pseudo-first order rate law. The higher rate of photodegradation observed on Ag-DP25 at pH 6.6 can be correlated to the ratios of the concentrations of the ionized to the neutral dye molecules and also to the higher concentration of hydroxylated surface, which are able to effectively scavenge photogenerated valence band holes. Accumulation of the holes in the semiconductor particles increases the probability of formation of excited oxygen atom which is a reactive species readily oxidizing the organic dye molecule. The reduction of pH during the course of the reaction is attributed to the complete mineralization of the dye.  相似文献   

13.
讨论了光纤表面等离子体波传感器的工作原理,并对将其用于监测以甲基橙为代表的环境污水降解过程的可行性进行了探讨。用光纤SPR传感器监测了50 mL初始浓度为30 mg·L-1的甲基橙原溶液在降解过程浓度的变化,对降解过程中光纤SPR传感器的光谱进行了详细的分析;同时采用紫外-分光光度计对降解过程中溶液浓度的变化进行了监测,并对2种方法所测的数据进行了分析对比。结果表明,光纤SPR同常规方法的测量结果一致,随着降解时间的增加,甲基橙溶液的吸光度和浓度逐渐减小,光纤SPR传感器的共振波长逐渐发生蓝移,同初始标定的甲基橙原溶液共振光谱比较,说明甲基橙逐渐被降解,且在2 h内降解率达到73%,说明用光纤SPR传感器监测污水降解过程是完全可行的。研究结果不仅为环境污水降解过程提供了一种新的监测方法,同时促进了我国SPR传感技术与环保监测研究结合,为光纤SPR技术走向实用,并最终实现产业化积累了经验。  相似文献   

14.
In the present study, decolorization and mineralization of a cationic dye, Rhodamine 6G (Rh6G), has been carried out using hydrodynamic cavitation (HC). Two cavitating devices such as slit and circular venturi were used to generate cavitation in HC reactor. The process parameters such as initial dye concentration, solution pH, operating inlet pressure, and cavitation number were investigated in detail to evaluate their effects on the decolorization efficiency of Rh6G. Decolorization of Rh6G was marginally higher in the case of slit venturi as compared to circular venturi. The kinetic study showed that decolorization and mineralization of the dye fitted first-order kinetics. The loadings of H2O2 and ozone have been optimized to intensify the decolorization and mineralization efficiency of Rh6G using HC. Nearly 54% decolorization of Rh6G was obtained using a combination of HC and H2O2 at a dye to H2O2 molar ratio of 1:30. The combination of HC with ozone resulted in 100% decolorization in almost 5–10 min of processing time depending upon the initial dye concentration. To quantify the extent of mineralization, total organic carbon (TOC) analysis was also performed using various processes and almost 84% TOC removal was obtained using HC coupled with 3 g/h of ozone. The degradation by-products formed during the complete degradation process were qualitatively identified by liquid chromatography-mass spectrometry (LC-MS) and a detailed degradation pathway has been proposed.  相似文献   

15.
Methomyl, a carbamate pesticide, is classified as a pesticide of category-1 toxicity and hence shows harmful effects on both human and aquatic life. In the present work, the degradation of methomyl has been studied by using hydrodynamic cavitation reactor (HC) and its combination with intensifying agents such as H2O2, fenton reagent and ozone (hybrid processes). Initially, the optimization of operating parameters such pH and inlet pressure to the cavitating device (circular venturi) has been carried out for maximizing the efficacy of hydrodynamic cavitation. Further degradation study of methomyl by the application of hybrid processes was carried out at an optimal pH of 2.5 and the optimal inlet pressure of 5 bar. Significant synergetic effect has been observed in case of all the hybrid processes studied. Synergetic coefficient of 5.8, 13.41 and 47.6 has been obtained by combining hydrodynamic cavitation with H2O2, fenton process and ozone respectively. Efficacy of individual and hybrid processes has also been obtained in terms of energy efficiency and extent of mineralization. HC + Ozone process has proved to be the most effective process having highest synergetic coefficient, energy efficiency and the extent of mineralization. The study has also encompassed the identification of intermediate by-products generated during the degradation and has proposed the probable degradation pathway. It has been conclusively established that hydrodynamic cavitation in the presence of intensifying agents can effectively be used for complete degradation of methomyl.  相似文献   

16.
Sonophotocatalysis involves the use of a combination of ultrasonic sound waves, ultraviolet radiation and a semiconductor photocatalyst to enhance a chemical reaction by the formation of free radicals in aqueous systems. Researchers have used sonophotocatalysis in a variety of investigations i.e. from water decontamination to direct pollutant degradation. This degradation process provides an excellent opportunity to reduce reaction time and the amount of reagents used without the need for extreme physical conditions. Given its advantages, the sonophotocatalysis process has a futuristic application from an engineering and fundamental aspect in commercial applications. A detailed search of published reports was done and analyzed in this paper with respect to sonication, photocatalysis and advanced oxidation processes.  相似文献   

17.
An ultrasound-assisted method was used for synthesizing nanosized Pt-graphene oxide (GO)-TiO2 photocatalyst. The Pt-GO-TiO2 nanoparticles were characterized by diffused reflectance spectroscopy, X-ray diffraction, N2 BET adsorption-desorption measurements, atomic force microscopy and transmission electron microscopy. The photocatalytic and sonophotocatalytic degradation of a commonly used anionic surfactant, dodecylbenzenesulfonate (DBS), in aqueous solution was carried out using Pt-GO-TiO2 nanoparticles in order to evaluate the photocatalytic efficiency. For comparison purpose, sonolytic degradation of DBS was carried out. The Pt-GO-TiO2 catalyst degraded DBS at a higher rate than P-25 (TiO2), prepared TiO2 or GO-TiO2 photocatalysts. The mineralization of DBS was enhanced by a factor of 3 using Pt-GO-TiO2 compared to the P-25 (TiO2). In the presence of GO, an enhanced rate of DBS oxidation was observed and, when doped with platinum, mineralization of DBS was further enhanced. The Pt-GO-TiO2 catalyst also showed a considerable amount of degradation of DBS under visible light irradiation. The initial solution pH had an effect on the rate of photocatalytic oxidation of DBS, whereas no such effect of initial pH was observed in the sonochemical or sonophotocatalytic oxidation of DBS. The intermediate products formed during the degradation of DBS were monitored using electrospray mass spectrometry. The ability of GO to serve as a solid support to anchor platinum particles on GO-TiO2 is useful in developing new photocatalysts.  相似文献   

18.
A series of ZnO nanoparticles decorated on multi-walled carbon nanotubes (ZnO/CNTs composites) was synthesized using a facile sol method. The intrinsic characteristics of as-prepared nanocomposites were studied using a variety of techniques including powder X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM), transmission electron microscope (TEM), scanning electron microscope (SEM) with energy dispersive X-ray analysis (EDX), Brunauer Emmett Teller (BET) surface area analyzer and X-ray photoelectron spectroscopy (XPS). Optical properties studied using UV–Vis diffuse reflectance spectroscopy confirmed that the absorbance of ZnO increased in the visible-light region with the incorporation of CNTs. In this study, degradation of Rhodamine B (RhB) as a dye pollutant was investigated in the presence of pristine ZnO nanoparticles and ZnO/CNTs composites using photocatalysis and sonocatalysis systems separately and simultaneously. The adsorption was found to be an essential factor in the degradation of the dye. The linear transform of the Langmuir isotherm curve was further used to determine the characteristic parameters for ZnO and ZCC-5 samples which were: maximum absorbable dye quantity and adsorption equilibrium constant. The natural sunlight and low power ultrasound were used as an irradiation source. The experimental kinetic data followed the pseudo-first order model in photocatalytic, sonocatalytic and sonophotocatalytic processes but the rate constant of sonophotocatalysis is higher than the sum of it at photocatalysis and sonocatalysis process. The sonophotocatalysis was always faster than the respective individual processes due to the more formation of reactive radicals as well as the increase of the active surface area of ZnO/CNTs photocatalyst. Chemical oxygen demand (COD) of textile wastewater was measured at regular intervals to evaluate the mineralization of wastewater.  相似文献   

19.
The special flower-like and sheet-like ZnO structures were successfully synthesized by hydrothermal method. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). The photocatalytic activity of different morphologies of ZnO structures was evaluated by degradating of methyl orange (MO). The photocatalytic degradation process was monitored in terms of decolorization and total organic carbon (TOC) removals. The results indicated that the flower-like ZnO structures were consisted of numerous flower-like aggregates with the size of 2 μm. The sheet-like ZnO nanostructures were obtained by increasing the reaction time. They exhibited higher photodegradation efficiencies under UV light irradiation than flower-like ZnO structures due to the blue shift of the band gap. The photodegradation could be described as the pseudo-first-order kinetics with apparent rate constants ranging from 1.17 × 10−2 to 3.42 × 10−2 min−1, which were based on the morphology of the structures. The photodegradation was faster than the mineralization, indicating that the accumulation of by-products were resistant to photocatalytic degradation.  相似文献   

20.
采用特殊液相沉淀法制备纳米级的TiO2/SnO2复合粒子,对制备的纳米TiO2/SnO2采用XRD、TEM等手段进行了表征。用它做催化剂在日光下对甲基橙溶液进行了光催化实验。结果表明,纳米级TiO2/SnO2复合催化剂比纯TiO2的催化活性好,当SnO2摩尔百分数为20%时效果最佳,在60min内对10mg/L的甲基橙水溶液的降解率高达90.2%,具有较好的光催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号