首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 129 毫秒
1.
以实心铁芯涡流损耗及线圈铜损耗为主要热源,研究了推力磁轴承转子系统的电磁场、温度场及电磁场-温度场耦合效应.给出了基于电磁场-温度场耦合的轴对称温度场有限元求解方法.研究表明,造成系统温升的主要原因是推力磁轴承实心推力盘的涡流损耗.  相似文献   

2.
电磁推力轴承的力学特性研究   总被引:6,自引:0,他引:6  
文中讨论了计入推力盘静态倾斜影响后的电磁推力轴承的力学特性,导出了其静、动特性的系数公式,并结合某涡轮膨胀机的电磁推力轴承进行了实例计算.结果表明,推力盘的静态倾斜对电磁推力轴承的力学特性将产生显著影响,使得电磁推力轴承对系统中的电磁径向轴承产生强烈的耦合作用.该结果可用于五自由度电磁轴承转子系统的机电耦合的动力学分析.  相似文献   

3.
针对引信体外无线供能系统中初、次级线圈被金属介质包裹的耦合结构,为降低金属管中存在的严重涡流损耗,建立了金属介质中涡流损耗的数学模型。通过求解麦克斯韦方程组,推导了涡流损耗的解析表达式。采用ANSYS仿真软件分析、对比磁屏蔽和开槽两方案减少系统涡流损耗的效果。实验与仿真结果表明,通过在初级线圈外包裹坡莫合金薄层可将外围磁路束缚在该薄层内,从而有效减少系统涡流损耗,其效果优于金属管开槽方案。  相似文献   

4.
基于电磁-温度场耦合方法,分析了盘式永磁驱动器的温度场.基于电磁场解析计算建立了盘式永磁驱动器的电磁场解析模型,推导了涡流损耗公式.计算了热阻和散热系数,并以涡流损耗为热源,建立了盘式永磁驱动器等效热网络模型.预测随负载变化时盘式永磁驱动器的涡流损耗和铜盘温度的变化.解析结果与有限元结果比较表明:基于电磁-温度场耦合方法所建立的电磁场解析模型和温度场解析模型能快速、准确地预测涡流损耗和铜盘温度.  相似文献   

5.
关于磁轴承的磁力,在理论计算上有人曾用等效电流法.但这种方法不易被人们理解.本文提供了一种易被人们理解接受的方法,磁荷库仑定律法.  相似文献   

6.
电磁推力轴承磁路计算方法的改进   总被引:1,自引:0,他引:1  
用有限元法对同向和反向偏流输入情况下各种结构布置形式的电磁推力轴承系统按整体模型进行磁场和承载力的计算,分析了不同结构型式对磁通分布和电磁力大小的影响。以磁路的基尔霍夫定律和欧姆定律为基础,将电磁推力轴承的整体磁场模拟为等效的电路网络,探讨了不同磁路的磁阻计算方法,然后通过简单的串、并联电路分析,算出整体磁场中的磁通分布和电磁力值,其结果与有限元分析相一致。确认了等效网路法对电磁轴承考虑漏磁影响的整体结构设计计算的适用性,并给出了具体的计算方法。  相似文献   

7.
分析了圆锥电磁轴承的几何耦合效应以及电流耦合效应,推导了圆锥电磁轴承特有的力矩耦合特性,给出了圆锥电磁轴承动力学特性的计算方法。在此基础上,计算了轴承锥角、宽径比以及极角比对圆锥电磁轴承静特性基础解的影响。结果表明,圆锥电磁轴承静态力与轴承宽径比成线性关系,但轴承力矩与宽径比之间是非线性的;圆锥电磁轴承极角比越大,磁极面积越小,轴承静态力以及力矩都会减小。  相似文献   

8.
在锌锅的流动及传热状态的数值模拟中,感应加热器边界条件的处理是计算的关键和难点。以某连续热镀锌锌锅作为研究对象,采用ANSYS软件的电磁场模块,计算得到锌锅加热器中洛仑兹力及焦耳热的分布,并将其作为加热器区域流场计算时动量及能量的源项,从而实现了对加热器中电磁场和流场耦合的锌锅全场计算。与前人给定热流密度的处理方法相比较,本文方法更真实地逼近了实际物理模型与过程。计算结果表明,熔沟中的锌液在洛仑兹力作用下呈螺旋状地由中心熔沟向两侧熔沟流动,加热器出口截面上的最大速度约为0.77m/s,大部分区域中的速度均大于0.3m/s,计算结果与文献中实际锌锅运行时的数据吻合良好,表明了本文方法的正确性和有效性。  相似文献   

9.
基于导热反问题分析的推力轴承瞬态油膜温度监控方法   总被引:6,自引:0,他引:6  
为了克服在传统的推力轴承油膜温度监控方法中存在的瓦面温度滞后于油膜温度,以及最高油膜温度不易确定等缺点,提出了基于导热反问题分析和插值算法的油膜瞬态温度场重构方法。通过重构的温度场,不但可以解决由瓦体热容导致的测温滞后问题,而且还可以准确确定最高油膜温度值及其出现的位置,数值验证表明,琪于导热反问题分析的推力轴承瞬态油膜温度重构方法可用于油膜温度的在线监控。  相似文献   

10.
针对设计的压电-电磁复合式俘能器,建立其归一化机电耦合模型,利用数值计算和实验测试分析在不同耦合强度下俘能器的振动特性和输出功率. 研究结果表明,在谐振频率点处,当负载匹配时,俘能器的输出功率最大;随着耦合强度增大,俘能器的输出功率、俘能带宽、谐振频率点偏移值也增大. 对于弱耦合和强耦合,复合式俘能器的输出功率大于基于单一俘能机理的压电式或电磁式俘能器的输出功率. 此外,复合式俘能器的最佳负载电阻与耦合效应的强度有关.  相似文献   

11.
基于三维运动涡流场的有限元模型,分析了永磁涡流联轴器的电磁场分布,进而计算出主从转轴传递的功率和转矩.并研究了永磁体和铜盘的尺寸对装置特性的影响,得到永磁涡流联轴器的初步优化设计方案.永磁体占空比a确定在0.7左右;永磁体厚度hm选在其与输出功率P的关系曲线的拐点处较为合适;确定永磁极对数时,应根据不同的永磁体占空比确保扇形永磁体平均半径处的弧长l与径向宽度wm之比在相应范围内;铜盘厚度hcu在6~9mm范围内选取;铜盘内外径应根据铜盘径向宽度wcu与wm比值在1.2~1.6之间确定.最后通过样机实验验证了计算方法的正确性.  相似文献   

12.
低频涡流电磁场非自伴变分问题的研究   总被引:1,自引:0,他引:1  
利用伴随算子和伴随场函数,建立了低频涡流电磁场中非自伴算子问题的一般变分描述.还分别应用最小作用原理和拉格朗日乘子法(广义变分原理)建立了低频涡流电磁场中非自伴算子问题的变分描述.将这3种变分方法与迦辽金法进行了比较.结果显示,上述所有方法均可获得与迦辽金法完全一致的结果.最后讨论了拉格朗日乘子的意义及其与伴随场函数的关系.  相似文献   

13.
提出了一种表贴式带保护套永磁同步电机转子涡流损耗的快速解析模型,同时考虑了定子时空谐波、涡流反作用和永磁体周向分段3种情况。在考虑永磁体周向分段时,忽略次生谐波及其耦合影响,以简化计算过程。将此解析模型应用在6相24槽14极永磁同步电机上,首先对其结果进行收敛性分析,减少截断误差的同时提高了计算效率;然后用时步有限元法等进行精度验证,得到的平均涡流损耗与本模型解析解较为吻合;最后由解析模型,绘制永磁体层中的涡流电密图。本解析模型可以快速得到涡流损耗的响应面,为电机设计及优化迭代提供理论依据。  相似文献   

14.
庄会东  张晓东 《科学技术与工程》2012,12(26):6794-6797,6809
依据电磁感应原理,变化磁场周围的导体会受到电磁力的作用,依靠该效应的涡流驱动快速充气阀已经在中科院等离子体所研制成功,通过利用ANSYS有限元分析软件,计算不同的脉冲电流及不同线圈电感及线圈与阀芯不同间距情况下的导体所受电磁力的不同,找到影响电磁力的主要因素,为快阀的改进提供理论依据。  相似文献   

15.
HT-7U装置环向场线圈涡流损耗分析   总被引:2,自引:2,他引:0  
文章分析了由等离子体电流和真空室感应电流在HT-7U装置环向场超导磁体中产生的涡流损耗.超导磁体中变化的磁场被分解为切向和法向两个分量,通过将超导线圈分为适当单元可求出磁场两个分量产生的涡流损耗.文中给出涡流损耗的分布及其随时间变化情况.计算结果表明涡流损耗不仅沿线圈周长分布不均匀而且在线圈的断面上也不均匀.  相似文献   

16.
为研究三维扇形斜面平台推力瓦的润滑性能,采用数值分析方法,通过Matlab软件计算水膜厚度、压力分布,使用有限元ANSYS软件获得推力瓦位移场和温度场的分布规律.研究表明:推力瓦块的压力呈两边低、中间高的趋势;水膜厚度与瓦块的几何形状有关;瓦块的最高温度和最大压力值均出现在推力瓦周向靠近出水口的位置.  相似文献   

17.
提出了一种新的金属工件孔径非接触在线测量方法 ,讨论了电涡流传感器在线测量的工作原理 ,给出了金属工件孔径的计算公式 ,实践证明 ,这种方法检测简单易行 ,精度高 ,速度快 ,切实可行。  相似文献   

18.
装用电涡流缓速器的汽车制动性能分析   总被引:8,自引:4,他引:8  
为掌握汽车上装用电涡流缓速器的制动性能及其对汽车制动性能的影响,建立装用缓速器的汽车制动时动力学方程式;结合道路试验,从下坡能力和平路上的减速能力两个方面考察电涡流缓速器的制动效能;通过道路试验,考察在中、高车速下,电涡流缓速器对汽车紧急制动的影响;从理论上分析了装用电涡流缓速器后,理想的汽车前、后车轮制动力的分配曲线的改变情况及其在紧急制动时对汽车制动稳定性影响。  相似文献   

19.
鼠笼转子磁力联轴器空载气隙磁场有限元分析   总被引:1,自引:0,他引:1  
为得到鼠笼转子异步磁力联轴器内部磁场的直观分布情况,首先给出了空载磁场理论分析,其次运用ANSYS软件对影响该磁力联轴器气隙磁场的主要因素:磁极数、永磁体厚度、内转子槽数、槽宽和槽深进行了模拟分析.结果表明当磁极对数为14极,永磁体厚度为8mm,槽数为24槽,槽宽为8mm,槽深为18mm,在安装允许的范围内气隙长度为最小时磁力联轴器的气隙磁密最大.鼠笼转子异步磁力联轴器的有限元分析方法为该类联轴器的结构优化设计提供了一种新思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号