首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
无胶筛分毛细管电泳分析几百个碱基对核酸的条件优化   总被引:1,自引:0,他引:1  
丁晓萍  廖杰  刘晓达  王全立  马立人 《色谱》1998,16(6):485-488
通过正交设计实验综合分析了内充羟丙基甲基纤维素(HPMC)无胶筛分毛细管电泳中的分离场强、HPMC浓度、柱长度和柱内径对核酸分离的影响。结果表明,柱长度越长、柱内径越小、分离场强越小,分离效果越好。考虑实际情况,为能在短时间内使几百个碱基对的核酸得到有效分离,一般选择37cm×75μmi.d.的涂壁毛细管、柱内质量浓度为8g/L的HPMC、场强为324V/cm的条件,并在此种条件下分析了ApoB100基因的低浓度聚合酶链式反应(PCR)扩增产物(710bp)。  相似文献   

2.
An automatic DNA fragment collector using capillary array gel electrophoresis has been developed. A sheath flow technique is used for not only detection but also collection of DNA fragments. In a sheath flow cell, the DNA fragments separated by 16 capillaries flow independently into corresponding sampling capillaries. The fraction collector consists of 16 sampling trays and each sampling tray is set beneath each end of the sampling capillaries to collect the flow-through DNA fragments. Certain DNA fragments are automatically sorted by controlling the movement of the sampling trays according to the signals from the system. The collector experimentally separated two mixtures of polymerase chain reaction (PCR) products: one prepared by using eight different sizes (base lengths from 161 to 562) of DNAs; and the other prepared by a differential display (DD) method with cDNA fragments. Collected DNA fragments are amplified by PCR and measured by electrophoresis. DNA fragments with base length differences of one (base lengths 363 and 364) were successfully separated. A separated DNA fragment from the DD sample was also successfully sequenced. In addition, differentially expressed DNA fragments were automatically sorted by comparative analysis, in which two similar cDNA fragment groups, labeled by two different fluorophores, respectively, were analyzed in the same gel-filled capillary. These results show that the automatic DNA fragment collector is useful for gene hunting in research fields such as drug discovery and DNA diagnostics.  相似文献   

3.
Huang MF  Huang CC  Chang HT 《Electrophoresis》2003,24(17):2896-2902
The analysis of double-stranded (ds) DNA fragments by capillary electrophoresis (CE) using poly(ethylene oxide) (PEO) solution containing gold nanoparticles (GNPs) is presented, focusing on evaluating size dependence of the GNPs and PEO on resolution and speed. To prevent the interaction of the capillary wall with DNA, the capillary was dynamically coated with polyvinylpyrrolidone. Using different PEO solutions containing GNPs ranging in diameter from 3.5 to 56 nm, we have achieved reproducible, rapid, and high-resolution DNA separations. The results indicate that the sizes of PEO and GNPs as well as the concentration of PEO affect resolution. The separation of DNA ranging in size from 8 to 2176 base pairs (bp) was accomplished in 5 min using 0.2% PEO (8 MDa) containing 56 nm GNPs. We have also demonstrated the separations of the DNA fragments ranging from 5 to 40 kbp using 0.05% PEO (2 MDa) containing 13 nm GNPs or 0.05% PEO (4 MDa) containing 32 nm GNPs. With very low viscosity (< 15 cP), automatic replacement of the sieving matrices is easy, indicating a great potential for high-throughput DNA analysis using capillary array electrophoresis systems.  相似文献   

4.
5.
Phospholipid additives are a cost-effective medium to separate deoxyribonucleic acid (DNA) fragments and possess a thermally-responsive viscosity. This provides a mechanism to easily create and replace a highly viscous nanogel in a narrow bore capillary with only a 10 °C change in temperature. Preparations composed of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble, forming structures such as nanodisks and wormlike micelles. Factors that influence the morphology of a particular DMPC–DHPC preparation include the concentration of lipid in solution, the temperature, and the ratio of DMPC and DHPC. It has previously been established that an aqueous solution containing 10% phospholipid with a ratio of [DMPC]/[DHPC] = 2.5 separates DNA fragments with nearly single base resolution for DNA fragments up to 500 base pairs in length, but beyond this size the resolution decreases dramatically. A new DMPC–DHPC medium is developed to effectively separate and size DNA fragments up to 1500 base pairs by decreasing the total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 1% of the DNA fragment size up to 1500 base pairs. This increase in the upper size limit is accomplished using commercially available phospholipids at an even lower material cost than is achieved with the 10% preparation. The separation additive is used to evaluate size markers ranging between 200 and 1500 base pairs in order to distinguish invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing differences in gene sequences of collagen-like proteins in these organisms. For the first time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing the thermally-responsive viscosity of these self-assembled phospholipid preparations. A discontinuous matrix is created that is composed of a cartridge of highly viscous phospholipid assimilated into a separation matrix of low viscosity. DNA sample stacking is facilitated with longer injection times without sacrificing separation efficiency.  相似文献   

6.
We assessed the feasibility of high-speed DNA sequencing by tube-based capillary electrophoresis (TCE) with electrokinetic sample injections. We developed a water-circulated TCE system to control the capillary temperature precisely. Using this system and a ready-made sieving matrix at 50 degrees C, single-stranded DNA size marker fragments were separated at various pairs of the electric field strength, E, of 128-480 V/cm and the capillary effective length, L, of 100-360 mm. Assuming the read length (RL) is the fragment size at which the peak width equals the peak interval per base in obtained electropherograms, we estimated the values of RL (E, L), the RL at the pair (E, L). The points in ELz-space, (E, L, RL(E, L)), form a curved surface expressed by z = RL(E, L). Analyzing the contour lines of this curved surface, we determined the pairs of E and L providing target RLs of 300-500 bases within a minimum time. At a pair optimized for a 500-base RL (330 V/cm, 200 mm), one-color sequencing fragments were successfully separated up to 529 bases within 9.6 min. These results demonstrate that high-speed DNA sequencing comparable with that obtained by microfabricated chip-based capillary electrophoresis (MCE) can be achieved with TCE, which is more suitable in automation than MCE.  相似文献   

7.
王前许旭  戴立信 《中国化学》2006,24(12):1766-1772
Quasi-interpenetrating network of polyacrylamide (PAA) and polyvinylpyrrolidone (PVP) had been successfully used for single-base resolution of double-stranded DNA (0.76 for 123 bp/124 bp) and single-stranded DNA fragments (0.97 for 123 b/124 b) with UV detection. This quasi-IPN (interpenetrating network) sieving matrix showed low viscosity (23.5 mPa·s at 25 ℃) and decreased with increasing temperature. This polymer also exhibited dynamically coating capacity and could be used in the uncoated capillary. The effects of temperature and electric field strength on the DNA separation of quasi-IPN matrix were also investigated and found that the temperature and electric field strength could markedly affected the mobility behavior of DNA fragments. This polymer matrix has also applied to separate the bigger DNA fragments by capillary electrophoresis with UV detection. Under the denaturing conditions, this matrix separated the samples with last fragment of 1353 base in 40 rain, in which the doublet of 309/310 base was partial separated and the resolution was 0.88.  相似文献   

8.
A rapid on-column DNA labeling technique is used to detect viral restriction DNA fragments by capillary electrophoresis-laser induced fluorescence detection. Intercalating dyes such as POPO3 or ethidium homodimer-2 are incorporated into the detection buffer. The cationic dyes migrate into the capillary during electrophoresis and bind to the oppositely migrating DNA fragments. A post-column sheath-flow fluorescence detector is used in the experiment. Excellent labeling efficiency is achieved at minimal background fluorescence by diluting the dyes to between 1 x 10(-7) M and 5 x 10(-7) M in a buffer with low ionic strength relative to the running buffer within the capillary. This dilute sheath-flow buffer allows stacking of dye molecules inside the capillary when an electric field is applied. Calibration curves using a series of DNA size markers (between 72 and 1353 base pairs) were linear over an order of magnitude in DNA concentration. Sensitivity also increased linearly with fragment length, and detection limits ranged from 4 x 10(-14) M to 5 x 10(-13) M for the size-standards. Analysis of cloned viral DNA using duck hepatitis B virus demonstrated a concentration detection limit of 3.9 x 10(-16) M. Last, the technique produced very high separation efficiency, 14 x 10(6) theoretical plates which is greater than 47 x 10(6) plates m-1, for the duck hepatitis B viral genome.  相似文献   

9.
We report electrophoretic separation of supercoiled plasmids (2-16 kilo base pairs) and linear double-stranded DNA (0.6-23 kilo base pairs) in uncoated capillaries filled with dilute hydroxyethylcellulose. Because electroosmotic flow reverses the order of elution, long plasmids spend less time in the capillary and their bandwidths are narrower than observed in coated capillaries. However, resolution is similar to that obtained in coated capillaries, because it is governed by the distribution of unresolved topoisomers. In the presence of electroosmotic flow migration of supercoiled plasmids does not follow the elastic rod model that has been observed in coated capillaries.  相似文献   

10.
Chiou SH  Huang MF  Chang HT 《Electrophoresis》2004,25(14):2186-2192
The separation of DNA by capillary electrophoresis using poly(ethylene oxide) (PEO) containing gold nanoparticles (GNPs) is presented. The impacts of PEO, GNPs, ethidium bromide (EtBr), and pH on the separation of double-stranded DNA have been carefully explored. Using a capillary dynamically coated with 5.0% poly(vinylpyrrolidone) and filled with 0.2% PEO containing 0.3 x GNPs (the viscosity less than 15 cP), we have demonstrated the separation of DNA markers V and VI within 5 min at pH 8.0 and 9.0. In terms of resolution and reproducibility, GNPs have a greater impact on the separation of DNA at pH 9.0. Resolution improvements for large DNA fragments (> 300 base pairs, bp) are greater than those for small ones in the presence of GNPs. It is important to point out that reproducibility is excellent (relative standard deviations for the migration times less than 0.5%) and thus no further dynamic coating is required in at least 20 consecutive runs in the presence of GNPs. Using 0.2% PEO (pH 9.0) containing 0.3 x GNPs, the separation of DNA fragments ranging in size from 21 to 23,130 bp was accomplished in 7 min. The results presented in this study show the advantage of PEO containing GNPs for DNA separation, including rapidity, high resolving power, excellent reproducibility, and ease of filling capillaries.  相似文献   

11.
Tseng WL  Chang HT 《Electrophoresis》2001,22(4):763-770
DNA separations were performed in poly(ethylene oxide) (PEO) solutions prepared in 100 mM Tris-boric acid (TB) buffers using a capillary filled with TB buffers with concentrations up to 2.5 M, pH 10.0. The electroosmotic flow (EOF) increased with increasing the concentration of TB buffers till 1.5 M as a result of decreasing PEO adsorption on the capillary wall. At high TB concentrations (> 1.5 M), the peaks corresponding to small DNA fragments (11 and 8 base pairs) became sharper and were detected. Relative standard deviations of the EOF coefficient and the migration times of the DNA fragments were all less than 1% using a capillary filled with TB buffers at concentrations higher than 1.5 M. When separations were performed at different pH values of PEO solutions and TB buffers, better results in terms of sensitivity, speed, and resolution were generally achieved. The fluorescence intensity of the 2176 bp fragment obtained at pH values of TB buffers/PEO solutions 10.0/8.2 was 27-fold of that at pH values 8.2/8.2. The enhancement was related to effects of pH and borate on fluorescence intensity, DNA conformation, stacking, and interactions with the capillary wall. Using a capillary filled with 400 mM TB buffers, pH 10.0, the separation of DNA (pBR 322/HaeIII digest, pBR 328/Bg/I digest and pBR 328/HinfI digest) in 1.5% PEO solutions prepared in 100 mM TB buffers, pH 9.0, at 375 V/cm was accomplished in less than 18 min.  相似文献   

12.
An integrated system for DNA sequencing based on a nanoreactor for cycle-sequencing reaction coupled with on-line capillary zone electrophoresis (CZE) for purification and capillary gel electrophoresis (CGE) for separation is presented. Less than 100 nl of premixed reagent solution, which includes dye-labeled terminator pre-mix, bovine serum albumin and template, was hydrodynamically injected into a fused-silica capillary (75 microm I.D.) inside a laboratory-made microthermocycler for cycle sequencing reaction. In the same capillary, the reaction products were purified by CZE followed by on-line injection of the DNA fragments into another capillary for CGE. Over 540 base pairs (bp) of DNA can be separated and the bases called for single-standed DNA with 0.9% error rate. The total time was about 3.5 h, or a cycle time of 2 h with staggered operation. For double-stranded DNA, a longer reaction time was required and base calling up to 490 bp with 1.2% error rate was achieved. The whole system is readily adaptable to automated multiplex operation for DNA sequencing or polymerase chain reaction analysis.  相似文献   

13.
无胶筛分毛细管电泳分离盐生盐杆菌DNA片段   总被引:2,自引:0,他引:2  
王园朝  熊音  曾昭睿  程介克  沈萍 《色谱》2001,19(5):439-442
 由羟乙基纤维素和聚吡咯烷酮混合组成筛分介质 ,在涂敷聚硅氧烷的毛细管柱上 ,研究了LambdaDNA/EcoRⅠ +HindⅢ片段分离的最佳条件。实验表明 ,混合筛分介质与单一的羟乙基纤维素筛分介质相比 ,改变了筛分介质的孔径大小 ,抑制了毛细管壁对DNA的吸附 ,从而改善了分离 ,并首次在同一条件下将所含的 13个片段完全分离。方法简便、快速 ,曾应用于两组盐生盐杆菌DNA片段的分离及其碱基对数目的推测。  相似文献   

14.
15.
We report sedimentation velocity and equilibrium measurements performed with an analytical ultracentrifuge to elucidate the effects of limited flexibility on the transport properties of semiflexible, monodisperse, double-stranded, blunt-ended DNA restriction fragments. We study a homologous series of fragments with 400, 800, and 1600 base pairs (3 to 11 persistence lengths), which are specifically designed and synthesized for this purpose (Part I). The molecular weights following from the sedimentation measurements agree well with the values expected on the basis of the number of base pairs. The sedimentation coefficients at infinite dilution are in good agreement with theoretical predictions for wormlike cylinders. The first order in volume fraction (varphi) coefficient K of the varphi-dependent sedimentation coefficient s(varphi)=1-Kvarphi decreases from 1178 for the shortest fragment to 882 for the longest fragment. These values are much larger than predicted for uncharged rigid rods, indicating the presence of associates with an enhanced aspect ratio and excluded volume. The precise match of the molecular weights obtained from exponential sedimentation-diffusion equilibrium distributions with weights calculated from the number of base pairs shows that any association is reversible and disappears at sufficiently low DNA concentration.  相似文献   

16.
Du M  Flanagan JH  Lin B  Ma Y 《Electrophoresis》2003,24(18):3147-3153
The detection of point and other simple mutations in DNA is important for cancer research and diagnosis and other biological studies. Capillary electrophoresis has been successfully used for separating DNA fragments. However, a low-viscosity polymer sieving buffer for DNA separation with on-line coating has never been reported. In this paper, a new method using capillary electrophoresis with on-line coating and laser-induced fluorescence detection (CE-LIF) for screening for point or simple DNA mutations has been demonstrated. The method uses an on-line dynamic coating technique that increases capillary lifetime and analysis reproducibility, and employs a low-viscosity polymer solution, which allows the user to rinse the capillary rapidly and refill with polymer solution easily. Experiments proved that the additives in the separation buffer for on-line capillary coating do not affect the separation efficiency of the running buffer, and do not interfere with the formation of hydrogen-bonded network between boric acid, mannitol and hydroxypropylmethylcellulose polymers. The stability of the dynamically coated capillary was quantitatively studied; the capillary lifetime was increased 6- to 7-fold compared with that of permanently coated CE columns. Standard DNA fragments containing mutations, with sizes of 209, 219, and 338 bps, were successfully separated and detected with this system, after the mutated DNA fragments were cleaved by CEL-I endonuclease. The technique is very sensitive for the size-separation of low-range, middle-range, and high-range DNA fragments. Results were compared with the HPLC methods developed by Transgenomic, Inc. and were in good agreement. The method should be applicable to mutation detection for all relevant biological and clinical studies. The factors influencing separations and the stability of dynamic capillary coatings are also discussed in the paper.  相似文献   

17.
The impact of hexadecyltrimethylammonium bromide (CTAB) on the separation of ds-DNA by capillary electrophoresis in conjunction with laser-induced fluorescence (CE-LIF) detection using poly(ethylene oxide) (PEO) solution is described. The use of CTAB for improved separation reproducibility and efficiency of DNA has not been demonstrated although it is widely used for controlling the magnitude and direction of electroosmotic flow in CE. With increasing CTAB concentration, the interactions of DNA with ethidium bromide (EtBr) and with the capillary wall decrease. For the separation of DNA fragments with the sizes ranging from several base pairs (bp) to 2,176 bp, a polymer solution consisting of 0.75% poly(ethylene oxide), 100 mM TB buffer (pH 8.0), 25 microg/mL EtBr, and 0.36 microg/mL CTAB is proper. Using the PEO solution, we separated a mixture of DNA markers V (pBR 322/HaeIII digest) and VI (pBR 328/BglI digest and pBR 328/HinfI digest) within 8 min at -375 V/cm, with the limit of detection of 2.0 ng/mL based on the peak height for the 18-bp DNA fragment. The method is highly efficient (>10(6)plate/m), repeatable (RSD of the migration times <1.5%), and sensitive. In addition, it is convenient to fill a capillary (75 microm in diameter) with such a low-viscosity PEO solution by syringe pushing.  相似文献   

18.
Silver-coated capillaries were used for direct sample injection in multiplexed capillary electrophoresis. The absence of an additional electrode simplifies mechanical alignment, reduces contamination, and decreases the amount of sample needed. Capillaries were coated by a silver paint which is a suspension of silver particles in an organic solvent. To provide electrical contact, the upper part of the capillary and a platinum wire were wound together by a copper wire. Electrical resistance from the platinum wire to the tip of the capillary was small enough (7 ω to 50 ω) to inject large amounts of DNA samples. Electrokinetic injection from eight separate sample vials to eight capillaries was demonstrated for DNA sequencing by multiplexed capillary electrophoresis. Signal-to-noise ratio and resolution were good enough to call up to 350 base pairs.  相似文献   

19.
This paper describes the analysis of large DNA fragments at pH > 10.0 by capillary electrophoresis (CE) in the presence of electroosmotic flow (EOF) using hydroxyethylcellulose (HEC) solution. HEC solution in the anodic reservoir enters the capillaries filled with high-pH buffer by EOF after sample injection. With respect to resolution, sensitivity, and speed, separation conducted under discontinuous conditions (different pH values of HEC solutions and buffer filling the capillary) is appropriate. Using HEC solution at concentrations higher than its entanglement threshold ensures a good separation of large DNA fragments in the presence of EOF at high pH. In addition to pH and HEC, the electrolyte species, dimethylamine, methylamine, and piperidine, play different roles in determining the resolution. The separation of DNA fragments ranging in size from 5 to 40 kilo base pairs was completed in 6 min using 1.5% HEC prepared in 20 mM methylamine-borate, pH 12.0, and the capillary filled with 40 mM dimethylamine-borate, pH 10.0. In comparison, this method allows faster separations of large DNA fragments compared with that conducted in the absence of EOF using dilute HEC solutions.  相似文献   

20.
We evaluated a novel strategy for high-sensitivity DNA fragment analysis in a conventional glass double-T microfluidic chip. The microchip allows for a DNA on-channel concentration based on base stacking (BS) with a microchip capillary gel electrophoretic (MCGE) separation step in a poly(vinylpyrrolidone) (PVP) sieving matrix. Depending if low conductivity caused a neutralization reaction between the hydroxide ions and the run buffer component Tris+, the stacking of DNA fragments were processed in the microchip. Compared to a conventional MCGE separation with a normal electrokinetic injection, the peak heights of 50-2650-base pair (bp) DNA fragments on the MCGE-BS separation were increased 3.9-8.0-fold. When we applied the MCGE-BS method to the analysis of a clinical sample of bovine theileria after PCR reaction, the peak height intensity of the amplified 816-bp DNA fragment from the 18S rRNA of T. buffeli was enhanced 7.0-fold compared to that of the normal injection method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号