首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In recent years, olefin cross metathesis (CM) has emerged as a powerful and convenient synthetic technique in organic chemistry; however, as a general synthetic method, CM has been limited by the lack of predictability in product selectivity and stereoselectivity. Investigations into olefin cross metathesis with several classes of olefins, including substituted and functionalized styrenes, secondary allylic alcohols, tertiary allylic alcohols, and olefins with alpha-quaternary centers, have led to a general model useful for the prediction of product selectivity and stereoselectivity in cross metathesis. As a general ranking of olefin reactivity in CM, olefins can be categorized by their relative abilities to undergo homodimerization via cross metathesis and the susceptibility of their homodimers toward secondary metathesis reactions. When an olefin of high reactivity is reacted with an olefin of lower reactivity (sterically bulky, electron-deficient, etc.), selective cross metathesis can be achieved using feedstock stoichiometries as low as 1:1. By employing a metathesis catalyst with the appropriate activity, selective cross metathesis reactions can be achieved with a wide variety of electron-rich, electron-deficient, and sterically bulky olefins. Application of this model has allowed for the prediction and development of selective cross metathesis reactions, culminating in unprecedented three-component intermolecular cross metathesis reactions.  相似文献   

2.
Ruthenium-catalyzed olefin metathesis reactions represent an attractive and powerful transformation for the formation of new carbon-carbon double bonds. This area is now quite familiar to most chemists as numerous catalysts are available that enable a plethora of olefin metathesis reactions. Nevertheless, with the exception of uses in polymerization reactions, only a limited number of industrial processes use olefin metathesis. This is mainly due to difficulties associated with removing ruthenium from the final products. In this context, a number of studies have been carried out to develop procedures for the removal of the catalyst or the products of catalyst decomposition, however, none are universally attractive so far. This situation has resulted in tremendous activity in the area dealing with supported or tagged versions of homogeneous catalysts. This Review summarizes the numerous studies focused on developing cleaner ruthenium-catalyzed metathesis processes.  相似文献   

3.
Cyclic Ru‐phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring‐closing metathesis (RCM), enyne and cross‐metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring‐opening metathesis polymeriyation (ROMP) of this monomer.  相似文献   

4.
We have reported the template synthesis of a 90-membered macrocycle by olefin metathesis. The macrocycle 7 was prepared by an initial six-oxidative-addition reaction of 2 by [Pt(PEt(3))(4)]. The definite structure of a six-oxidative product was confirmed by the crystal structure. The coordination of 2,6-bis(hex-5-enyloxy)pyridine to 3 led to the hexacationic aryl complex of type 4. The metathesis of olefin-substituted pyridine with Grubbs catalyst ([PhCH==RuCl(2)(Cy(3)P)(2)]) formed the expected macrocycle 5. The olefin metathesis reaction was formed under high dilution to suppress intermolecular olefin metathesis polymerization. The detachment of the newly formed macrocycle 6, followed by reduction to alkane macrocycle 7 by using palladium on charcoal and hydrogen led to a huge macrocycle. The mild and easy access of the template protocol opens a host of potential subsequent transformations toward the construction of a variety of macrocycles.  相似文献   

5.
The carbonyl–olefin metathesis reaction has experienced significant advances in the last seven years with new catalysts and reaction protocols. However, most of these procedures involve soluble catalysts for intramolecular reactions in batch. Herein, we show that recoverable, inexpensive, easy to handle, non‐toxic, and widely available simple solid acids, such as the aluminosilicate montmorillonite, can catalyze the intermolecular carbonyl–olefin metathesis of aromatic ketones and aldehydes with vinyl ethers in‐flow, to give alkenes with complete trans stereoselectivity on multi‐gram scale and high yields. Experimental and computational data support a mechanism based on a carbocation‐induced Grob fragmentation. These results open the way for the industrial implementation of carbonyl–olefin metathesis over solid catalysts in continuous mode, which is still the origin and main application of the parent alkene–alkene cross‐metathesis.  相似文献   

6.
New recyclable imidazolium-tagged ruthenium catalysts have been developed to perform olefin metathesis in room temperature ionic liquids (RTILs). High level of recyclability combined with a high reactivity were obtained in the ring-closing metathesis (RCM) of a variety of di- or tri-substituted and/or oxygen-containing dienes. Extremely low residual ruthenium levels were detected in the RCM products (average of 7.3 ppm per run). Several examples of olefin cross-metathesis (CM) have been also studied.  相似文献   

7.
A recently developed catalytic living ring opening metathesis polymerisation (ROMP) was investigated using a series of reversible chain transfer agents (CTA) carrying either cyclopentene or cyclohexene rings, differing only in ring strain. All cyclopentene derivatives examined showed significantly faster reaction rates than the corresponding cyclohexene derivatives. This resulted in lower molecular weight dispersities and better control of the molecular weight for the cyclopentene compared to the cyclohexene CTAs. Both Grubbs’ second and third generation catalysts could be employed in catalytic living ROMP using cyclopentene CTA derivatives. The kinetics of different CTAs were studied, block copolymers were synthesised and residual ruthenium quantified by ICP‐OES. All polymers were fully characterised by NMR, GPC and MALDI‐ToF mass spectrometry. The new cyclopentene CTAs are readily synthesised in a few straightforward steps and provide faster reaction kinetics than all previously reported reversible CTAs.  相似文献   

8.
The carbonyl–olefin metathesis reaction has experienced significant advances in the last seven years with new catalysts and reaction protocols. However, most of these procedures involve soluble catalysts for intramolecular reactions in batch. Herein, we show that recoverable, inexpensive, easy to handle, non-toxic, and widely available simple solid acids, such as the aluminosilicate montmorillonite, can catalyze the intermolecular carbonyl–olefin metathesis of aromatic ketones and aldehydes with vinyl ethers in-flow, to give alkenes with complete trans stereoselectivity on multi-gram scale and high yields. Experimental and computational data support a mechanism based on a carbocation-induced Grob fragmentation. These results open the way for the industrial implementation of carbonyl–olefin metathesis over solid catalysts in continuous mode, which is still the origin and main application of the parent alkene–alkene cross-metathesis.  相似文献   

9.
The discovery and development of a new class of Ru-based catalysts for olefin metathesis is described. These catalysts, particularly those that do not bear a phosphine ligand, have been demonstrated to promote unique levels of reactivity in a variety of olefin metathesis reactions. The design and development of supported and chiral optically pure variants of this class of Ru catalysts for use in enantioselective metathesis are discussed as well. All catalysts are air stable, reusable, and can be employed with unpurified solvents.  相似文献   

10.
A study concerning the effect of using a fluorinated aromatic solvent as the medium for olefin metathesis reactions catalysed by ruthenium complexes bearing N-heterocyclic carbene ligands is presented. The use of fluorinated aromatic hydrocarbons (FAH) as solvents for olefin metathesis reactions catalysed by standard commercially available ruthenium pre-catalysts allows substantially higher yields of the desired products to be obtained, especially in the case of demanding polyfunctional molecules, including natural and biologically active compounds. Interactions between the FAH and the second-generation ruthenium catalysts, which apparently improve the efficiency of the olefin metathesis transformation, have been studied by X-ray structure analysis and computations, as well as by carrying out a number of metathesis experiments. The optimisation of reaction conditions by using an FAH can be regarded as a complementary approach for the design of new improved ruthenium catalysts. Fluorinated aromatic solvents are an attractive alternative medium for promoting challenging olefin metathesis reactions.  相似文献   

11.
Macrocyclic olefin metathesis has seen advances in the areas of stereochemistry, chemoselectivity, and catalyst stability, but strategies aimed at controlling dilution effects in macrocyclizations are rare. Herein, a protocol to promote macrocyclic olefin metathesis, one of the most common synthetic tools used to prepare macrocycles, at relatively high concentrations (up to 60 mM ) is described by exploitation of a phase‐separation strategy. A variety of macrocyclic skeletons could be prepared having either different alkyl, aryl, or amino acids spacers.  相似文献   

12.
The electrochemical reduction of WCl6 results in the formation of an active olefin (alkene) metathesis catalyst. The application of the WCl6–e?–Al–CH2Cl2 catalyst system to cross‐metathesis reactions of non‐functionalized acyclic olefins is reported. Undesirable reactions, such as double‐bond shift isomerization and subsequent metathesis, were not observed in these reactions. Cross‐metathesis of 7‐tetradecene with an equimolar amount of 4‐octene generated the desired cross‐product, 4‐undecene, in good yield. The reaction of 7‐tetradecene with 2‐octene, catalyzed by electrochemically reduced tungsten hexachloride, resulted in both self‐ and cross‐metathesis products. The cross‐metathesis products, 2‐nonene and 6‐tridecene, were formed in larger amounts than the self‐metathesis products of 2‐octene. The optimum catalyst/olefin ratio and reaction time were found to be 1 : 60 and 24 h, respectively. The cross‐metathesis of symmetrical olefins with α‐olefins was also studied under the predetermined conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
赵宝祥 《有机化学》2001,21(6):445-452
综述了金属复分解闭环反应最新进展。金属复分解闭环反应已成为有机合成中的非常重要的方法,广泛应用于碳环、杂环化合物及天然产物的合成。原子经济的、绿色化学的优点展示出更加诱人的前景。  相似文献   

14.
A convergent route to a variety of C-1-disaccharide glycals based on the olefin metathesis reaction of enol ethers and alkenes is described. The DCC-mediated coupling reaction of a variety of pentose enitols (1a-c) with a number of C-5- and C-6-monosaccharide carboxylic acids (2a-e) gave the corresponding esters 3a-l in good yield. Methylenation of these compounds was followed by ring-closing metathesis, mediated by the Schrock molybdenum catalyst 8 in warm toluene, to provide the target C-disaccharide glycals 5a-l. The formed enol ether double bond in 5a was then transformed, via standard manipulations, into a variety of C-disaccharide derivatives 21-25.  相似文献   

15.
The “metathesis reaction” is a straightforward and often metal-catalyzed chemical reaction that transforms two hydrocarbon molecules to two new hydrocarbons by exchange of molecular fragments. Alkane, alkene and alkyne metathesis have become an important tool in synthetic chemistry and have provided access to complex organic structures. Since the discovery of industrial olefin metathesis in the 1960s, many modifications have been reported; thus, increasing scope and improving reaction selectivity. Olefin metathesis catalysts based on high-valent group six elements or Ru(IV) have been developed and improved through ligand modifications. In addition, significant effort was invested to realize olefin metathesis with a non-toxic, bio-compatible and one of the most abundant elements in the earth′s crust; namely, iron. First evidences suggest that low-valent Fe(II) complexes are active in olefin metathesis. Although the latter has not been unambiguously established, this review summarizes the key advances in the field and aims to guide through the challenges.  相似文献   

16.
Ring-opening/ring-closing metathesis on cyclobutene-containing substrates with angular oxygen functionality provides a stereospecific introduction of 1,5-bis-dienes required for an anion-accelerated oxy-Cope rearrangement. The reaction sequence offers generally a stereocontrolled preparation of a variety of medium ring-containing bicyclic ring systems, while rearrangement to the bicyclo[7,3,0]dodecane (9-5) system leads to a mixture of olefin isomers.  相似文献   

17.
Cross metathesis (CM) reactions between polyenes, such as β-carotene, canthaxanthin or retinyl acetate, and various alkenes or dienes in the presence of second generation Hoveyda-Grubbs (H II) or Grubbs (G II) catalysts were investigated. Depending on the cross partner different apocarotenoids were obtained. Cross metathesis reactions of retinyl acetate proved to be fully regioselective. Carotenoid CM reactions afforded mixtures of two products due to competing cleavage of the C11-C12 and C15-C15′ double bonds. However, regioselectivity can be controlled by choice of appropriate reaction conditions. The reactions of polyenes with dienes worked better in respect of yields and diastereoselectivities than those with monounsaturated cross partners.  相似文献   

18.
The use of olefin metathesis as a construction tool for multimetallic salen-based structures is described. The approach involves mono- and diallyl-functionalized metallosalen complexes that can be directly coupled by metathesis leading to dimetallic species or mixtures of linear and cyclic oligomers. The metathesis of bis-allyl Ni(salen) complexes has been studied in detail. At high concentration it is possible to selectively obtain di-Ni species rather than heavier oligomers while under dilute conditions cyclic rather than linear oligomers are preferentially obtained. A mono-allyl Zn(salphen) complex was efficiently coupled using metathesis to give the di-Zn(salphen) product, which was subsequently transmetalated with a variety of metals to yield dimetallic salens of potential catalytic interest. Finally, a tetranuclear Zn(4) macrocycle was also prepared using buildings blocks obtained by metathesis from commercially available precursors. The methods described herein allow for the facile construction of multi-centered Schiff base complexes of catalytic or supramolecular interest.  相似文献   

19.
In the attempt to synthesize substituted allenyl esters through a metathesis coupling of unsubstituted allenyl esters and alkenes using a variety of ruthenium catalysts, it was discovered that allenyl esters themselves cleanly arrested the activity of the catalysts. Further studies suggests possible utility of allene esters as general quenching agents for metathesis reactions. To explore this idea, several representative olefin metathesis reactions, including ring closing, were successfully terminated by the addition of simple allenyl esters for more convenient purification.  相似文献   

20.
Olefin metathesis has recently emerged as a viable reaction for chemical protein modification. The scope and limitations of olefin metathesis in bioconjugation, however, remain unclear. Herein we report an assessment of various factors that contribute to productive cross-metathesis on protein substrates. Sterics, substrate scope, and linker selection are all considered. It was discovered during this investigation that allyl chalcogenides generally enhance the rate of alkene metathesis reactions. Allyl selenides were found to be exceptionally reactive olefin metathesis substrates, enabling a broad range of protein modifications not previously possible. The principles considered in this report are important not only for expanding the repertoire of bioconjugation but also for the application of olefin metathesis in general synthetic endeavors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号