首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A strong effect of radiation damping on the interaction of an ultraintense laser pulse with an overdense plasma slab is found and studied via a relativistic particle-in-cell simulation including ionization. Hot electrons generated by the irradiation of a laser pulse with a radiance of I lambda(2)>10(22) W microm(2)/cm(2) and duration of 20 fs can convert more than 35% of the laser energy to radiation. This incoherent x-ray emission lasts for only the pulse duration and can be intense. The radiation efficiency is shown to increase nonlinearly with laser intensity. Similar to cyclotron radiation, the radiation damping may restrain the maximal energy of relativistic electrons in ultraintense-laser-produced plasmas.  相似文献   

2.
次稠密等离子体对激光与锥形靶相互作用的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用三维粒子模拟程序模拟了强激光在锥形靶内的传播情况.发现锥内次稠密等离子体的存在使激光在锥顶部的最大聚焦强度有所降低,产生的相对论电子的最大能量和数目增加.激光在锥壁激发起强的电流和磁场,次稠密的存在还使锥内产生强的准静态磁场,磁场的存在使相对论电子速度分布在垂直激光传播方向上表现出各向同性. 关键词: 超强激光脉冲 锥形靶 快点火 粒子模拟  相似文献   

3.
Acceleration of large populations of ions up to high (relativistic) energies may represent one of the most important and interesting tools that can be provided by the interaction of petawatt laser pulses with matter. In this paper, the basic mechanisms of ion acceleration by short laser pulses are studied in underdense plasmas. The ion acceleration does not originate directly from the pulse fields, but it is mediated by the electrons in the form of electrostatic fields originating from channeling, double layer formation and Coulomb explosion  相似文献   

4.
Two dimensional particle-in-cell simulations show that laser channeling in millimeter-scale underdense plasmas is a highly nonlinear and dynamic process involving longitudinal plasma buildup, laser hosing, channel bifurcation and self-correction, and electron heating to relativistic temperatures. The channeling speed is much less than the linear group velocity of the laser. The simulations find that low-intensity channeling pulses are preferred to minimize the required laser energy but with an estimated lower bound on the intensity of I approximately 5x10(18) W/cm(2) if the channel is to be established within 100 ps. The channel is also shown to significantly increase the transmission of an ignition pulse.  相似文献   

5.
A set of exact one-dimensional solutions to coupled nonlinear equations describing the propagation of a relativistic ultrashort circularly polarized laser pulse in a cold collisionless and bounded plasma where electrons have an initial velocity in the laser propagating direction is presented. The solutions investigated here are in the form of quickly moving envelop solitons at a propagation velocity comparable to the light speed. The features of solitons in both underdense and overdense plasmas with electrons having different given initial velocities in the laser propagating direction are described. It is found that the amplitude of solitons is larger and soliton width shorter in plasmas where electrons have a larger initial velocity. In overdense plasmas, soliton duration is shorter, the amplitude higher than that in underdense plasmas where electrons have the same initial velocity.  相似文献   

6.
The interaction of a high-energy relativistic laser pulse with an underdense plasma is studied by means of 3-dimensional particle in cell simulations and theoretical analysis. For powers above the threshold for channeling, the laser pulse propagates as a single mode in an electron-free channel during a time of the order of 1?picosecond. The steep laser front gives rise to the excitation of a surface wave along the sharp boundaries of the ion channel. The surface wave first traps electrons at the channel wall and preaccelerates them to relativistic energies. These particles then have enough energy to be further accelerated in a second stage through an interplay between the acceleration due to the betatron resonance and the acceleration caused by the longitudinal part of the surface wave electric field. It is necessary to introduce this two-stage process to explain the large number of high-energy electrons observed in the simulations.  相似文献   

7.
For the interpretation of experiments for acceleration of electrons at interaction up to nearly GeV energy in laser produced plasmas, we present a new model using interaction magnetic fields. In addition to the ponderomotive acceleration of highly relativistic electrons at the interaction of very short and very intense laser pulses, a further acceleration is derived from the interaction of these electron beams with the spontaneous magnetic fields of about 100 MG. This additional acceleration is the result of a laser-magnetic resonance acceleration (LMRA) around the peak of the azimuthal magnetic field. This causes the electrons to gain energy within a laser period. Using a Gaussian laser pulse, the LMRA acceleration of the electrons depends on the laser polarization. Since this is in the resonance regime, the strong magnetic fields affect the electron acceleration considerably. The mechanism results in good collimated high energetic electrons propagating along the center axis of the laser beam as has been observed by experiments and is reproduced by our numerical simulations. PACS 41.75.Jv; 52.38.Kd; 52.65.Cc  相似文献   

8.
Relativistic laser-plasma interaction results in new sources of short-pulsed x-ray radiation. Here we consider two options. The first one is betatron radiation of electrons accelerated in underdense plasmas and oscillating in transverse fields of the laser wake. This radiation is incoherent and broadband, the pulse duration is comparable with that of the driving laser. The second option is the high harmonic generation (HHG) from overdense plasma surfaces. This radiation is coherent. The relativistic high harmonics are phase locked and emerge in the form of (sub-)attosecond pulses. One- and three-dimensional regimes of relativistic HHG from overdense plasmas are considered.  相似文献   

9.
曹莉华  余玮  徐涵  刘占军  郑春阳  李斌 《中国物理》2004,13(8):1302-1308
The mechanism of electron ponderomotive acceleration due to increasing group velocity of laser pulse in inhomogeneous underdense plasma layers is studied by two-dimensional relativistic parallel particle-in-cell code. The electrons within the laser pulse move with it and can be strongly accelerated ponderomotively when the duration of laser pulse is much shorter than the duration of optimum condition for acceleration in the wake. The extra energy gain can be attributed to the change of laser group velocity. More high energy electrons are generated in the plasma layer with descending density profile than that with ascending density profile. The process and character of electron acceleration in three kinds of underdense plasma layers are presented and compared.  相似文献   

10.
Ion acceleration by petawatt laser radiation in underdense and overdense plasmas is studied with 2D3V-PIC (Particle in Cell) numerical simulations. These simulations show that the laser pulse drills a channel through the plasma slab, and electrons and ions expand in vacuum. Fast electrons escape first from the electron-ion cloud. Later, ions gain a high energy on account of the Coulomb explosion of the cloud and the inductive electric field which appears due to fast change of the magnetic field generated by the laser pulse. Similarly, when a superintense laser pulse interacts with a thin slab of overdense plasma, its ponderomotive pressure blows all the electrons away from a finite-diameter spot on the slab. Then, due to the Coulomb explosion, ions gain an energy as high as 1 GeV. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 2, 80–86 (25 July 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

11.
Highly collimated, quasimonoenergetic multi-MeV electron bunches were generated by the interaction of tightly focused, 80-fs laser pulses in a high-pressure gas jet. These monoenergetic bunches are characteristic of wakefield acceleration in the highly nonlinear wave breaking regime, which was previously thought to be accessible only by much shorter laser pulses in thinner plasmas. In our experiment, the initially long laser pulse was modified in underdense plasma to match the necessary conditions. This picture is confirmed by semianalytical scaling laws and 3D particle-in-cell simulations. Our results show that laser-plasma interaction can drive itself towards this type of laser wakefield acceleration even if the initial laser and plasma parameters are outside the required regime.  相似文献   

12.
Raman forward scattering (RFS) is observed in the interaction of a high intensity (>1018 W/cm2) short pulse (<1 ps) laser with an underdense plasma (ne~1019 cm -3). Electrons are trapped and accelerated up to 44 MeV by the high-amplitude plasma wave produced by RFS. The laser spectrum is strongly modulated by the interaction, showing sidebands at the plasma frequency. Furthermore, as the quiver velocity of the electrons in the high electric field of the laser beam becomes relativistic, various effects are observed which can be attributed to the variation of electron mass with laser intensity  相似文献   

13.
A chirped laser pulse indicates that the laser frequency changes over the duration of the pulse: a positively (negatively) chirped pulse implies that the laser frequency increases (decreases) with time. In this paper, we use a simplified, fully relativistic hydrodynamic approach to simulate the influence of chirp on the propagation of a femtosecond relativistic laser pulse in underdense plasma. Based on this simplified cold‐fluid model, the influence of chirp on the main dynamics of the laser pulse, such as self‐steepening, red‐shift in the leading edge, variation of the frequency chirp, and the generated wakefields can be studied self‐consistently. The simulation results show that a pulse with a positive chirp results in a larger increment in the intensity parameter a0 when propagating a certain distance into an underdense plasma compared with an un‐chirped and a negatively chirped pulse, which is largely because of a much greater forward shift of the peak amplitude and more severe pulse self‐steepening effect due to the frequency red‐shift at the leading edge when exciting a plasma wave. The ponderomotive force, which relates to the first‐order differential of the laser pulse intensity envelope, is expected to be stronger for a positively chirped pulse because of its steeper leading edge and larger intensity parameter a0. As a result, the wakefield driven by the positively chirped laser pulse is more intense than that driven by an un‐chirped and a negatively chirped laser pulse, which is confirmed by our self‐consistent hydrodynamic simulation.  相似文献   

14.
李百文  郑春阳  宋敏  刘占军 《物理学报》2006,55(10):5325-5337
应用一维相对论电磁粒子模拟程序,详细研究了线性极化强激光入射到无碰撞稀疏密度长等离子体中引起的受激Raman散射、Raman级联散射、级联散射到光子凝聚、以及大振幅电磁孤立子的产生与加速. 通过研究发现:在适当的激光振幅和等离子体状态下,强的光子凝聚现象会导致大振幅电磁孤立子的产生,电磁孤立子可以以静止、向后以及向前加速的形式存在;在密度均匀的等离子体中,电磁孤立子的加速不仅依赖于激光振幅而且依赖于等离子体的长度;电磁孤立子的电磁频率大约为未扰动电子等离子体振荡频率的二分之一左右,孤立子内电磁场的电场具有半周期结构,相应电磁场的磁场以及静电场则具有一个完整的周期结构. 关键词: 粒子模拟 受激Raman散射 Raman级联散射 光子凝聚 电磁孤立子  相似文献   

15.
Interaction of relativistically strong laser pulses with underdense and overdense plasmas is investigated by a semi-Lagrangian Vlasov code. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by the electromagnetic wave as electron trapping, particle acceleration, and electron plasma wavebreaking. To describe the distribution of accelerated particle momenta and energy will require a very detailed analysis of the kinetic and time history of the plasma wave evolution. The semi-Lagrangian Vlasov code allows us to handle the interaction of ultrashort electromagnetic pulse with plasma at strongly relativistic intensities with a great deal of resolution in phase space  相似文献   

16.
利用脉宽为150fs、强度为8×1015W/cm2的P偏振飞秒激光研究了与 金属靶和绝缘靶 相互作用过程中的激光能量吸收、超热电子产额及超热电子能谱. 实验发现,由于绝缘靶电 导率小,因此其电荷分离势大于金属靶,从而导致绝缘靶比金属靶具有较小的激光能量吸收 、较少的超热电子发射和较高的超热电子温度. 关键词: 金属靶 绝缘靶 激光吸收 超热电子  相似文献   

17.
王广辉  王晓方  董克攻 《物理学报》2012,61(16):165201-165201
使用粒子模拟程序对30 fs超短超强激光在均匀与抛物型两种密度分布等离子体中的传输, 以及在稳定传输状态下尾场的电子注入与加速形成的电子能谱进行了模拟与分析. 固定入射激光束斑尺寸, 在(0.4-2)×1019/cm3等离子体密度范围, 对比分析了归一化峰值强度从1-6范围的激光脉冲在上述两种密度分布等离子 体中传输时激光束斑尺寸的演化, 结果表明抛物型分布的等离子体密度通道能够对超短超强脉冲实现良好的导引, 有利于高能电子加速. 对于较高密度情况,即使在均匀等离子体中依靠相对论自聚 焦等机制也可以实现良好的自导引传输,有利于实验简化以及产生更大电量的加速电子.  相似文献   

18.
We suggest a novel method for the injection of electrons into the acceleration phase of particle accelerators, producing low-emittance beams appropriate even for the demanding high-energy linear collider specifications. We discuss the injection mechanism into the acceleration phase of the wakefield in a plasma behind a high-intensity laser pulse, which takes advantage of the laser polarization and focusing. The scheme uses the structurally stable regime of transverse wakewave breaking, when the electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse elongated in the transverse direction with an underdense plasma, the electrons injected via the transverse wakewave breaking and accelerated by the wakewave perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with an asymmetric emittance (flat beam). An approach for generating flat laser-accelerated ion beams is briefly discussed. The text was submitted by the authors in English.  相似文献   

19.
晋兴雨  邱锡钧  朱志远 《物理学报》2006,55(10):5338-5343
基于相对论性激光-等离子体动力学理论,研究了相对论性激光-等离子体系统中圆偏振入射脉冲激光和等离子体相互作用对激光脉冲宽度的影响. 具体分析了在不同初始物理参数下脉冲激光的脉冲宽度在等离子体传播过程中的变化情况,重点分析了激光脉冲在等离子中压缩. 计算结果表明增加入射激光的强度和入射脉冲宽度以及减小等离子体的初始密度,能够有效地实现脉冲宽度在等离子体中压缩;当激光脉冲的初始参数a0=0.12和τ=70以及等离子体密度n0=0.3时,脉冲宽度相对压缩T/τ接近于1/10,从而给出了激光压缩的理论优化参数. 关键词: 相对论性激光-等离子体 激光脉冲宽度 等离子体密度 自压缩  相似文献   

20.
The transverse emittance of a relativistic electron beam generated by the interaction of a high-intensity laser with an underdense plasma has been measured with the "pepper-pot" method. For parameters pertaining to the forced laser wakefield regime, we have measured an emittance as low as (2.7+/-0.9) pi mm mrad for (55+/-2) MeV electrons. These measurements are consistent with 3D particle-in-cell simulations of the experiment, which additionally show the existence of a relatively large halo around the beam core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号