首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
重力场流分离是最简单的场流分离(gravitational flow-field fractionation,GrFFF)技术,常用于分离粒径几微米到几十微米的颗粒及生物样品。利用自组装加工的重力场流分离仪器分离3种不同粒径(3、6、20μm)的聚苯乙烯(PS)颗粒。自制了一种混合表面活性剂,并与商品化的表面活性剂FL-70进行了比较。通过均匀设计优化流速、混合表面活性剂中聚乙二醇辛基苯基醚(Triton X-100)的质量分数、载液黏度、停流时间等分离条件,以分离度(Rs)和保留比(R)为评价指标,发现FL-70的分离效能略优于自制的混合表面活性剂,可实现3种PS颗粒的完全分离(Rs1为1.771,Rs2为2.074)。结果表明该系统具有良好的分离性能。  相似文献   

2.
Biocompatible methods capable of rapid purification and fractionation of analytes from complex natural matrices are increasingly in demand, particularly at the forefront of biotechnological applications. Field-flow fractionation is a separation technique suitable for nano-sized and micro-sized analytes among which bioanalytes are an important family. The objective of this preliminary study is to start a more general approach to field-flow fractionation for bio-samples by investigation of the correlation between channel surface composition and biosample adhesion. For the first time we report on the use of X-ray photoelectron spectroscopy (XPS) to study the surface properties of channels of known performance. By XPS, a polar hydrophobic environment was found on PVC material commonly used as accumulation wall in gravitational field-flow fractionation (GrFFF), which explains the low recovery obtained when GrFFF was used to fractionate a biological sample such as Staphylococcus aureus. An increase in separation performance was obtained first by conditioning the accumulation wall with bovine serum albumin and then by using the ion-beam sputtering technique to cover the GrFFF channel surface with a controlled inert film. XPS analysis was also employed to determine the composition of membranes used in hollow-fiber flow field-flow fractionation (HF FlFFF). The results obtained revealed homogeneous composition along the HF FlFFF channel both before and after its use for fractionation of an intact protein such as ferritin.  相似文献   

3.
In this work, the biospecific recognition antigen–antibody reaction was implemented in gravitational field-flow fractionation (GrFFF), a flow-assisted separation technique for micron-sized particles, in order to realize a hybrid immunomodulated GrFFF system in which two different principles are combined to achieve highly versatile fractionation. Micron-sized polystyrene beads coated with horseradish peroxidase (HRP) were used as a model sample, and anti-HRP antibodies were immobilized on the accumulation wall of the GrFFF channel. Ultrasensitive chemiluminescence imaging was employed to visualize the beads during elution and to optimize experimental conditions. The same principle was then applied to real biological samples composed by Yersinia enterocolitica and Escherichia coli cells. Results show the possibility to modify the elution of selected sample components and even to retain them into the channel. The hybrid immunomodulated GrFFF system is a step towards the development of a module that could be integrated in a lab-on-a-chip-based point-of-care testing device which includes sample pre-analytical cleanup and analysis.  相似文献   

4.
Hollow-fiber flow field-flow fractionation (HF FlFFF) was applied for the separation and size characterization of airborne particles which were collected in a municipal area and prefractionated into four different-diameter intervals >5.0, 2.5-5.0, 1.5-2.5, <1.5 microm) by continuous split-flow thin (SPLIIT) fractionation. Experiments demonstrated the possibility of utilizing a hollow-fiber module for the high-performance separation of supramicron-sized airborne particles at steric/hyperlayer operating mode of HF FlFFF. Eluting particles during HF FlFFF separation were collected at short time intervals (approximately 10 s) for the microscopic examination. It showed that particle size and size distributions of all SPLITT fractions of airborne particles can be readily obtained using a calibration and that HF FlFFF can be utilized for the size confirmation of the sorted particle fraction during SPLITT fractionation.  相似文献   

5.
This study was designed to measure the distribution of pesticides within the mobile phase of simulated irrigation run-off water, using centrifugal split-flow thin-channel (SPLITT) fractionation, a novel technique providing a gentle separation of natural sediment and suspended particles. Particular attention is paid to the extraction of pesticide residues for enzyme-linked immunosorbent assay (ELISA) analysis; ELISA was used because of the limited sample size.Centrifugal SPLITT fractionation combined laminar flow hydrodynamics and centrifugal sedimentation to obtain a continuous binary separation of suspended particles. The non-destructive technique allowed an accurate separation of particles into fractions with divisions at 0.5, 2 and 10 μm, with those above 25 μm being performed by wet sieving. ELISA was used to analyse the concentration of endosulfan and diuron for each fraction generated by the SPLITT technique.This data can be used to determine the role that particulate fines and colloidal fractions play in the transport of bound organic pollutants within the environment and to examine prospects for remediation on farms.  相似文献   

6.
A simple gravitational field-flow fractionation (GrFFF) system was used for size separation of micron sized silica particles coated with hydrous iron oxide (geothite). The amount of iron on the particles was monitored either on-line by reverse-flow injection analysis (r-FIA) with chemiluminescence detection using luminol or off-line by electrothermal atomic absorption spectrophotometry (ETAAS). The combination of GrFFF with reverse FIA or with ETAAS has been demonstrated to be a cost-effective tool for size based iron speciation of particles.  相似文献   

7.
We recently built a magnetic separation system to extend the applications of split-flow thin (SPLITT) fractionation to magnetically susceptible particles. Here, we characterize the magnetic SPLITT system using magnetically susceptible particles and ion-labeled particles. The flow axis of separation channel was orientated parallel and perpendicular to gravitational forces to exclude and include, respectively, gravitational effects on separation. Both operating modes were used to test the theory experimentally, with emphasis on the parallel mode. The magnetic susceptibilities of carrier and ion-labeled particles were varied, and various ion-labeled and unlabeled particles were studied experimentally, resulting in successful separation of labeled particles, yeasts, and cells from unlabeled ones. The minimal difference in magnetic susceptibility (delta(chi)) required for complete particle separation was about 1.75 x 10(-5) [cgs], corresponding to about 10(9) labeling ions per particle in this study. The throughput was around 7.2 x 10(8) particles/h using the present setup. Magnetic SPLITT fractionation shows good potential for use in obtaining particles magnetic susceptibilities from a simple theoretical treatment.  相似文献   

8.

Starch is one of the main carbohydrates in food; it is formed by two polysaccharides: amylose and amylopectin. The granule size of starch varies with different botanical origins and ranges from less than 1 μm to more than 100 μm. Some physicochemical and functional properties vary with the size of the granule, which makes it of great interest to find an efficient and accurate size-based separation method. In this study, the full-feed depletion mode of split-flow thin cell fractionation (FFD-SF) was employed for a size-based fractionation of two types of starch granules (corn and potato) on a large scale. The fractionation efficiency (FE) of fraction-a for corn and potato granules was 98.4 and 99.4%, respectively. The FFD-SF fractions were analyzed using optical microscopy (OM) and gravitational field-flow fractionation (GrFFF). The respective size distribution results were in close agreement for the corn starch fractions, while they were slightly different for the potato starch fractions. The thermal properties of FFD-SF fractions were analyzed, and the results for the potato starch showed that the peak temperature of gelatinization (Tp) slightly decreases as the size of the granules increases. Additionally, the enthalpy of gelatinization (ΔH) increases when the granule size increases and shows negative correlation with the gelatinization range (ΔT).

  相似文献   

9.
Gravitational field-flow fractionation (GrFFF) is applied to the fractionation of active dry wine yeast. An experimental approach to the analysis of the effects that field variation by changing mobile phase composition and flow-rate have on the fractionation process of standard particles (polystyrene) was first developed to further obtain effective fractionation of wine yeast by GrFFF. Scanning electron microscopy and Coulter counter particle size measurements were used to monitor the fractionation extent and capabilities of GrFFF to describe the distribution of yeast cells populations.  相似文献   

10.
In this paper the analytical SPLITT (split flow thin cell) procedure is used to characterize the percentage composition of micronic polydisperse particulate samples at a given cut‐off size. The linearity and resolution of the separation method have been tested using specifically prepared starch samples, in order to compare the analytical process with two continuous (preparative) SPLITT procedures. Linearity has been checked by injecting a series of suspensions (at different concentrations) under five different flow rate conditions. Retrieval factors F were evaluated to verify the relative amount of sample exiting the cell outlets. The effective resolution has been assessed by inspecting the SPLITT fractions with an optical microscope, counting the granules, and evaluating the percentage of granules of expected size. It has been found that the resolution is very good (around 90%) and independent of sample distribution. It is seen from the comparison that in the analytical SPLITT mode sample resolution is usually around 85–90% and it is significantly better than that of the continuous SPLITT modes, thus making the analytical mode valuable in characterizing polydisperse samples. The method was tested for the characterization of a commercial starch sample.  相似文献   

11.
Recently, magnetic split-flow thin (SPLITT) fractionation has been developed to separate macromolecules, colloids, cells and particles. However, the previous theory, developed for an infinitely long channel, needs to be improved to consider the flow transit regimes at both inlet and outlet. In this paper, we describe a new approach to optimising flow-rates for particle separation which considers the effect of flow transit region. Surprisingly, the critical particle migration velocities derived by the present theory are identical to the previous simplified theory. Therefore, the previous simplified theory may have wider application than might have been expected. As a test of our theory, a numerical simulation based on solving Navier-Stokes equations has also been carried out for a magnetic SPLITT device. The trajectory of a particle with the critical migration velocity is exactly as expected by our theory. Following experimental validation, this work will facilitate the design of new SPLITT fractionation systems with smaller aspect ratio.  相似文献   

12.
Split-flow thin (SPLITT) fractionation devices have been widely used to separate macromolecules, colloids, cells and particles. Recently, the quadrupole magnetic flow sorter (QMS) has been reported in the literature as another family of SPLITT fractionation device. However, the separation performance observed in the experimental measurements is generally found to deviate from the ideal behaviour. Possible causes such as hydrodynamic lift force, high particle concentration and imperfect geometries have been extensively examined. However, the effects of flow development regions and fringing magnetic force field at the separation channel inlet and outlet, which are ignored by the theory, have not been investigated. The error introduced by ignoring these effects need to be rigorously studied so that the theory can be used to optimise operation flow rates with confidence. Indeed, we find in this paper that these ignored effects are responsible to the discrepancy between the experimental data and the theoretical predictions. A new theory has been proposed for optimisation of device operation.  相似文献   

13.
Gravitational field-flow fractionation (GrFFF) has been shown to be useful for separation and characterization of various types of micrometer-sized particles. It has been recognized however that GrFFF is less versatile than other members of FFF because the external field (Earth's gravity) in GrFFF is relatively weak and is not tunable (constant), which makes the force acting on the particles constant. A few approaches have been suggested to control the force acting on particles in GrFFF. They include (1) changing the angle between the Earth's gravitational field and the longitudinal axis of the channel, and (2) the use of carrier liquid having different densities. In the hyperlayer mode of GrFFF, the hydrodynamic lift force (HLF) also act on particles. The existence of HLF allows other means of changing the force acting on the particles in GrFFF. They include (1) the flow rate programming, or (2) the use of channels having non-constant cross-section. In this study, with polystyrene latex beads used as model particles, the channel angle was varied to study its effect on elution parameters (such as selectivity, band broadening and resolution) in the steric or in the hyperlayer mode of GrFFF. In addition, the effects of the channel thickness and the flow rate on the elution parameters were also investigated. It was found that, in the steric mode, the resolution decreases as the flow rate increases due to increased zone broadening despite of the increase in the selectivity. At a constant volumetric flow rate, both the zone broadening and the selectivity increase as the channel thickness increases, resulting in the net increase in the resolution. It was also found that the retention time decreases as the channel angle increases in both up- and down-flow positions. The zone broadening tends to increase almost linearly with the channel angle, while no particular trends were found in selectivity. As a result, the resolution decreases as the channel angle increases.  相似文献   

14.
重力场流分离作为最简单的一种场流分离技术,常用于分离微米级颗粒。选择两种不同粒径(20 μ m和6 μ m)的聚苯乙烯(PS)颗粒作为样品,通过改变载液中叠氮化钠浓度、混合表面活性剂的比例及载液流速,利用自行设计生产的重力场流分离(gravitational flow field-flow fractionation, GrFFF)仪器,对颗粒混合样品进行分离,得到了相关谱图与数据,考察了这3种因素对分离效果(保留比(R)、塔板高度(H))的影响。结果表明:20 μ m PS颗粒的R值均大于6 μ m PS颗粒的R值,H值均小于6 μ m颗粒的H值;PS颗粒的R值与H值均随着载液中叠氮化钠浓度的增加而增加;但随着载液流速的增加,R值增加,H值减小。该研究为GrFFF系统的开发及应用提供了重要的参考价值。  相似文献   

15.
C. Contado  M. Hoyos 《Chromatographia》2007,65(7-8):453-462
The gravitational split-flow lateral transport thin fractionation is known to be a fast, simple, theoretically tractable and tunable tool for the binary separation of molecular or particulate samples into different dimensional fractions. This fractionation is performed in a so-called SPLITT cell and is due to the combined effect of the gravitational force field and the flow rates inside the separation channel. It is known that separation performance is strongly dependent on the flow rate conditions and feed flow concentration, however, to date, few studies have been conducted to investigate the effect non-specific crossover has on separation. The aim of this work is to establish whether diffusive processes stemming from hydrodynamic effects contribute in any way to the quality of separation. A silica sample of known granule size distribution was chosen for this study which has environmental applications.  相似文献   

16.
Interest in biological studies on various cell types for many biomedical applications, from research to patient treatments, is constantly increasing. The ability to discriminate (sort) and/or quantify distinct subpopulations of cells has become increasingly important. For instance, not only detection but also the highest depletion of neoplastic cells from normal cells is an important requisite in the autologous transplantation of lymphocytes for blood cancer treatments. In this work, gravitational field-flow fractionation (GrFFF) is shown to be effective for sorting a heterogeneous mixture of human, living lymphocytes constituted of neoplastic B cells from a Burkitt lymphoma cell line and healthy T and B lymphocytes from blood samples. GrFFF does not require the use of fluorescent immunotags for sorting cells, and the sorted cells can be collected for their further characterization. Flow cytometry was used to assess the viability of the cells collected, and to evaluate the cell fractionation achieved. A low amount of neoplastic B lymphocytes (less than 2%) was found in a specific fraction obtained by GrFFF. The high depletion from neoplastic cells (more than 98%) was confirmed by a clonogenicity test.  相似文献   

17.
In the present work two separation techniques, namely the gravitational field-flow fractionation (GrFFF) and the reversed-flow gas chromatography (RFGC), are proposed for the distinction of the growth phases of Saccharomyces cerevisiae (AXAZ-1) yeast cycle at different temperatures (30 °C, 25 °C, 20 °C, and 15 °C) and pH (2.0, 3.0, 4.0 and 5.0) values. During the fermentation processes, differences observed in the peak profiles, obtained by GrFFF, can be related with the unlike cell growth. The distinction of the phases of AXAZ-1 cell cycle with the GrFFF, was also confirmed with the RFGC technique, which presented similar fermentation time periods for the alcoholic fermentation phases. Simultaneously, the reaction rate constant for each phase of the fermentation process and the activation energies were determined with the aid of the RFGC technique. Finally, the application of both the GrFFF and the RFGC techniques, in combination with high-performance liquid chromatography, allowed us to find the ideal experimental conditions (temperature and pH) for the alcoholic fermentation by AXAZ-1. The results indicate that S. cerevisiae cells performed better at 30 °C, whereas at lower temperatures decreases in the fermentation rate and in the number of viable cells were observed. Moreover, the pH of the medium (pH 5.0) resulted in higher fermentation rates and ethanol productivities.  相似文献   

18.
Magnetic split-flow thin (SPLITT) fractionation is a newly developed S  相似文献   

19.
The development of new methods for fractionating particles of a different nature is becoming more important in solving some scientific and technological problems. This paper presents a brief review in the theory and practice of the most common techniques for microparticle fractionation (0.1–100 μm). These are dry and wet sieving, elutriation, sequential filtration, split-flow thin fractionation (SPLITT system), field-flow fractionation (FFF), membrane filtration, and capillary electrophoresis. Special attention is paid to the FFF technique, which offers a unique potential for the separation of different materials, from biopolymers and microorganisms to colloidal and solid particles, and the estimation of their physical properties. An alternative version of sedimentation FFF is described, namely, the fractionation of microparticles in rotating coiled columns. The main advantages and limitations of the methods are revealed and their outlooks and fields of applications are envisaged.  相似文献   

20.
A growing need for methods to analyze and prepare monodisperse nanoparticles on an industrial scale exists and may be solved by the application of split flow thin fractionation (SPLITT) at the microscale. Microfluidic systems of this type have the ability to separate nanoparticles with high precision in a continuous manner. A miniaturized SPLITT system can be fabricated using standard microfabrication technologies, works in a continuous mode, and can be used as a sample preparation instrument in a micro-total-analysis-system (micro-TAS). In this paper, a miniaturized electrical SPLITT system, which separates particles continuously based on electrophoretic mobility, has been characterized. The advantages of miniaturization have been elucidated. The various aspects of the micro SPLITT system discussed in this paper can be broadly classified into: micro SPLITT system design, fluidics modeling to refine the splitter arrangements, and experimental characterization of the SPLITT system. The design of the micro SPLITT system has been elucidated focusing on the two designs that were implemented. Fluid modeling, used to arrive at a new SPLITT design, was done using a commercially available CFD package to investigate behavior of the fluid in the microchannel with various splitter arrangements. Testing was done with nanoparticles of varying diameter and electrophoretic mobilities to verify the modeling results and demonstrate functionality of the SPLITT system. Particles eluted from both outlets of the SPLITT system were characterized using AFM and SEM to verify the function of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号