首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Jee-Ching Wang   《Surface science》2003,540(2-3):326-336
We have studied the effects of surface step on molecular propane adsorption using molecular-dynamics simulations and a model stepped surface, Pt(6 5 5). Incidences along the step edge (smooth azimuth) and perpendicular to the step edge with upstairs momentum (upstairs azimuth) and downstairs momentum (downstairs azimuth) are considered. In general, the surface step enhances the initial trapping probability of propane except for the downstairs incidences. The most efficient zone in facilitating adsorption is near the bottom of the surface step on the lower terrace where incident molecules experience stronger attraction and an “additional-layer” effect when crossing the step. The least efficient zone is the top of the surface step on the upper terrace due to an opposite “missing-layer” effect. Surface step also creates steric effects such that more incident molecules along the upstairs azimuth but significantly less molecules along the downstairs azimuth impact the step-bottom zone. The latter steric effect, a shadowing effect, undermines the high trapping efficiency of the step-bottom zone to cause the downstairs incidences to have the lowest trapping probabilities. While the shadowing effect can be enhanced by larger incident angles and lower incident energies, the other steric effect on the upstairs incidences is relatively insensitive to the incident energy. Overall, the influence of surface step on molecular adsorption diminishes at low incident energies and large incident angles because longer contact times and less normal momenta result in high trapping probability across the entire stepped surface.  相似文献   

2.
Physical and chemical properties of bimetallic surfaces   总被引:2,自引:0,他引:2  
Recent studies dealing with the structural, electronic, chemical and catalytic properties of well-defined bimetallic surfaces are reviewed. LEED and STM show that two metals interacting on a surface can form compounds with structures not seen in bulk alloys. Many novel phenomena related to the kinetics of growth of metals on metals have been discovered. The knowledge gathered in this area provides a solid basis for the synthesis of new materials with applications in areas of catalysis, electro-chemistry and microelectronics. In many cases, the formation of a surface bimetallic bond induces large changes in the band structure of the metals. For surfaces that contain transition or s,p metals, the strongest metal-metal interactions occur in systems that combine a metal with a valence band almost fully occupied and a metal in which the valence band is almost empty. A very good correlation is found between the electronic perturbations in a bimetallic system and its cohesive energy. Bimetallic bonds that display a large stability usually involve a significant redistribution of charge around the metal centers. The electronic perturbations affect the reactivity of the bonded metals toward small molecules (CO, NO, H2, O2, S2, C2H4, CH3OH, etc.). For supported monolayers of Ni, Pd, Pt and Cu a correlation is observed between the shifts in surface core-level binding energies and changes in the desorption temperature of CO from the metal adlayers. Examples are provided which demonstrate the utility of single-crystal studies for understanding the role of “ensemble” and “ligand” effects in bimetallic catalysts.  相似文献   

3.
The growth of Cu on the clean and hydrogen-terminated Si(1 1 1) surfaces is studied in situ by low-energy electron microscopy (LEEM). The dependence of the growth of the “5×5” layer on the clean Si(1 1 1) 7×7 surface upon the deposition temperature is investigated by combining LEEM with LEED. After completion of the “5×5” layer not only the regular-shaped three-dimensional islands reported before are observed but also irregular shaped more two-dimensional islands. On the hydrogen-terminated Si(1 1 1) surface the formation of the “5×5” structure is suppressed and nano-scale islands form preferentially at the step edges and domain boundaries. This is attributed to the enhancement of the surface migration of Cu atoms by the elimination of the surface dangling bonds.  相似文献   

4.
A scanning tunneling microscopy/atomic force microscopy study is presented of a kinetically driven growth instability, which leads to the formation of ripples during Si homoepitaxy on slightly vicinal Si(0 0 1) surfaces miscut in [1 1 0] direction. The instability is identified as step bunching, that occurs under step-flow growth conditions and vanishes both during low-temperature island growth and at high temperatures. We demonstrate, that the growth instability with the same characteristics is observed in two dimensional kinetic Monte Carlo simulation with included Si(0 0 1)-like diffusion anisotropy. The instability is mainly caused by the interplay between diffusion anisotropy and the attachment/detachment kinetics at the different step types on Si(0 0 1) surface. This new instability mechanism does not require any additional step edge barriers to diffusion of adatoms. In addition, the evolution of ripple height and periodicity was analyzed experimentally as a function of layer thickness. A lateral “ripple-zipper” mechanism is proposed for the coarsening of the ripples.  相似文献   

5.
We study the effect of gold doping on oxygen vacancy formation and CO adsorption on the (1 1 0) and (1 0 0) surfaces of ceria by using density functional theory, corrected for on-site Coulomb interactions (DFT + U). The Au dopant substitutes a Ce atom in the surface layer, leading to strong structural distortions. The formation of one oxygen vacancy near a dopant atom is energetically “downhill” while the formation of a second vacancy around the same dopant requires energy. When the surface is in equilibrium with gaseous oxygen at 1 atm and room temperature there is a 0.4 probability that no oxygen atom left the neighborhood of a dopant. This means that the sites where the dopant has not lost oxygen are very active in oxidation reactions. Above 400 K almost all dopants have an oxygen vacancy next to them and an oxidation reaction in such a system takes place by creating a second vacancy. The energy required to form a second vacancy is smaller on (1 1 0) than on (1 0 0). On the (1 1 0) surface, it is much easier to form a second vacancy on the doped surface than the first vacancy on the undoped surface. The energy required to form a second oxygen vacancy on (1 0 0) is comparable to that of forming the first vacancy on the undoped surface. Thus doping makes the (1 1 0) surface a better oxidant but it has a small effect on the oxidative power of the (1 0 0) surface. On the (1 1 0) surface CO adsorption results in formation of a carbonate-like structure, similar to the undoped surface, while on the (1 0 0) surface direct formation of CO2 is observed, in contrast to the undoped surface. The Au dopant weakens the bond of the surrounding oxygen atoms to the oxide making it a better oxidant, facilitating CO oxidation.  相似文献   

6.
The surface structures of R30°-S and R19.1°-S on Pd(111) have been investigated by normal incidence X-ray standing wave (NIXSW) absorption and surface extended X-ray absorption fine structure (SEXAFS). NIXSW measurements show that the most likely site of S adsorption in the R30° phase is the threefold “fcc” hollow. The location of the S atoms at the “fcc” hollow site is consistent with S adsorption on the neighbouring fcc (111) transition metal surfaces. SEXAFS analysis revealed a S–Pd nearest neighbour bond distance of 2.28±0.04 Å. The results for the R19.1° phase suggest that the structure involves a mixed S–Pd overlayer, with the S–Pd vertical layer spacing equal to the Pd bulk 111 spacing.  相似文献   

7.
Platinum nanoparticles with a high percentage of cubic-, tetrahedral- and octahedral-like shapes, respectively, have been synthesized by a shape-controlling technique that we developed recently [Ahmadi et al., Science 272 (June 1996) 1924]. High resolution transmission electron microscopy (HRTEM) is used here to directly image the atomic scale structures of the surfaces of these particles with different shapes. The truncated shapes of these particles are mainly defined by the {100}, {111}, and {110} facets, on which numerous atom-high surface steps, ledges and kinds have been observed. This atomic-scale fine structure of the surfaces of these particles is expected to play a critical role in their catalytic activity and selectivity.  相似文献   

8.
On the basis of the itinerant-localized duality theory of spin fluctuations, the puzzling aspects of the neutron scattering experiments in the normal state of high-Tc cuprates are clarified from a global point of view. The dynamical spin structure factor exhibits two different aspects depending on the energy transfer ω. At lower energies, ω < ωc, where ωc is the fermion coherence energy, the spectrum is coherent so that the characteristic scales for wavevector and energy are temperature dependent, while at higher energies, ω > ωc, the spectrum is incoherent so that those characteristic scales are temperature independent. The integrated weight of the coherent part of the spectrum exhibits the so-called “spin gap” behavior when the Fermi surface of the itinerant fermion is technically nested, even though there is no excitation gap in the spectrum at all.  相似文献   

9.
J. Goniakowski  C. Noguera   《Surface science》1995,340(3):191-204
The electronic and atomic structure of vicinal MgO surfaces are studied using a quantum self-consistent method associated with a geometry optimization code. 10n, (n + 1)0n and n1n surfaces, with periodic monoatomic steps separating {001} or {101} terraces, are considered. Diatomic steps along the {10n} orientation and periodic kinks on the {3 1 10} surface are also modelled. We assign most electronic peculiarities of stepped surfaces to the values of the Madelung potential acting on the under-coordinated atoms, which is a function of their first and second coordination numbers. An analytical model is proposed to explain the bond contractions around these atoms. Finally the microscopic contributions to the step energy are discussed, together with the strength of the step interaction as a function of their separation.  相似文献   

10.
A. Berk    F. Solymosi 《Surface science》1998,400(1-3):281-289
A method for independent control of the particle size and distance is presented for rhodium epitaxy on TiO2(110)-(1×2) surface. The real space imaging of the surface morphology was performed by scanning tunneling microscopy. The amount of the deposited rhodium was checked by Auger electron spectrometry. The method consists of two steps: (i) evaporation of 0.001–0.050 ML equivalent of rhodium at room temperature with a post-annealing at 1100 K (“seeding”); (ii) post-deposition of rhodium for growing of the Rh nanoparticles formed in step (i) (“growing”). The mechanism of this procedure is based on the large difference of the surface diffusion coefficient between Rh adatoms and Rh nanocrystallites larger than 1–2 nm. In the first step the average distance between the metal particles is controlled in the range 5–200 nm, the second step determines the particles size (2–50 nm). This work demonstrates that the diffusion processes of metal nanoparticles of different sizes and the growing modes of the crystallites can be studied in detail by application of seeded surfaces.  相似文献   

11.
V.A. Marichev   《Surface science》2009,603(21):1131-60
Numerous derivations of the well-known Shuttleworth equation have been based on the unclear concept of “reversible cleavage” leading to the decisive step in any derivation - equalization of the surface free energy and surface stress. This is the key concept in contemporary surface thermodynamics of solids. But “cleavage” is not a surface process and, in this field, it cannot be a reversible operation. Besides, the “reversible cleavage” has no formal definition in the domain of the surface tension of solids that is an abnormal for any exact science. Consequently, this concept and all its corollaries including the Shuttleworth and generalized Lippmann equations have to be recognized as incorrect.  相似文献   

12.
Combining the studies of electrical, photoluminescence and stoichiometric analyses, the defect structure of undoped CuInS2 is revealed. For a multilevel system such as CuInS2, the ionization energies were determined to be 0.038, 0.068 and 0.145eV for the sulfur vacancy, indium interstitial and indium occupying the copper vacancy, respectively. A defect model based on deviation from the ideal chemical formula was developed to illustrate the self-compensation effects, in which “quantitative” investigations of the structural defects in undoped CuInS2 crystals are provided.  相似文献   

13.
The morphology of a Au(111) surface has been observed with the STM (scanning tunneling microscope) after ion bombardment with 2.5 keV Ne+ ions at about 400 K. Mostly triangular and hexagonal shaped vacancy islands are seen in the STM topographs. They are bounded by monatomic steps, oriented along the closed packed 110 directions. The general morphology confirms the conclusions inferred from TEAS (thermal energy atom scattering) measurements on ion bombarded Pt(111) surfaces. The observation of a propensity for the formation of {100} microfacetted 110 ledges is discussed.  相似文献   

14.
The theoretical track diameter of low energy ions in organic materials is usually estimated through the model of dose deposition by delta rays, with results remarkably lower than the experimental values obtained via a replica method and electron microscopy. The track detector used here is Makrofol-E and the ions studied have specific energies between 1.4 and 100 keV/n. To evaluate the problem from another point of view, thermal effects for track formation, a modified version of the “liquid drop model” for insulators was applied. The electronic as well as nuclear energy deposition by an individual ion are considered and the thermal spike evolution is studied. The model allows for the formation of ion tracks in a range of energies previously considered as “forbidden”. There still exists a discrepancy between the experimental data and the track diameters predicted by the model, and although this difference is smaller than the obtained with previous calculations, it suggests the necessity of further adjustments.  相似文献   

15.
Atomic scale computer simulation is used to predict the surface energies of UO2, subject to different hydroxide coverages. It was found that the {1 1 1} surface dominates dry UO2, resulting in an octahedral morphology. However, the {1 0 0} surfaces were strongly stabilized by hydroxylation relative to the {1 1 1} surfaces. Consequently, even a modest hydroxylation of 30% substantially truncates the octahedron crystal morphology, and a fully cubic morphology is predicted at 80% hydroxide coverage.  相似文献   

16.
We have investigated the growth of Ni on Pt stepped surfaces with (1 1 1) terraces by means of potentials derived from the second moment approximation in a tight-binding model. The activation energies associated to these processes are determined. The Schwoebel barriers of Ni atoms descending steps of Pt stepped surfaces are calculated for different kinds of straight steps (A and B steps) differing by the orientation of the ledge. In addition, we study the diffusion of Ni adatoms at fcc or hcp sites in the presence of small adislands on the terraces, in the vicinity of the A and B steps. We show that a good estimate of the potential wells and diffusion barriers could be given by introducing a lateral effective pair interaction model, the interactions extending up to the next nearest neighbors. Finally, we have carried out Kinetic Monte-Carlo simulations to investigate the Ni wire formation at Pt step edges and the influence of the exchange processes in the alloy formation.  相似文献   

17.
Surfaces of 6H-SiC(0001) homoepitaxial layers deposited on vicinal (3.5° off (0001) towards [11 0]) and on-axis 6H---SiC wafers by chemical vapour deposition have been investigated using ultra-high vacuum scanning tunneling microscopy. Undulating step configurations were observed on both the on-axis and the vicinal surfaces. The former surface possessed wider terraces than the latter. Step heights on both surfaces were 0.25 nm corresponding to single bilayers containing one Si and one C layer. After annealing at T>1100°C for 3–5 min in UHV, selected terraces contained honeycomb-like regions caused by the transformation to a graphitic surface as a result of Si sublimation. A model of the observed step configuration has been proposed based on the observation of the [ 110] or [1 10] orientations of the steps and energetic considerations. Additional deposition of very thin (2 nm) SiC films on the above samples by gas source molecular beam epitaxy was performed to observe the evolution of the surface structure. Step bunching and growth of 6H---SiC layers and formation of 3C---SiC islands were observed on the vicinal and the on-axis surfaces, respectively, and controlled by the diffusion lengths of the adatoms.  相似文献   

18.
The anisotropy of the surface free energy has a large influence on the decay rate of periodic surface profiles at temperatures below the roughening temperature. This has been demonstrated by a study of the periodic surface profiles that were etched into vicinal Au(111) crystals in two orientations: with their wavevector parallel (ψ = 0) and perpendicular (ψ = π/2) to the intrinsic step direction of the vicinal surface. Due to this modulation, steps become either oscillatory in shape or remain straight, with their average separation modulated. Accordingly, profile decay is driven primarily by step self-energy (ψ = 0) or step interaction energy (ψ = π/2). The rate of decay was measured under ultra-high vacuum conditions at 750°C using a scanning tunneling microscope for imaging. A large anisotropy of decay was observed on two vicinal crystals of 1.5 and 5° miscut, with the ψ = 0 decay being much faster than with ψ = π/2). The results are evaluated and discussed in the framework of recent theory.  相似文献   

19.
The nonverbal vocal utterances of seven normally hearing infants were studied within their first year of life with respect to age- and emotion-related changes. Supported by a multiparametric acoustic analysis it was possible to distinguish one inspiratory and eleven expiratory call types. Most of the call types appeared within the first two months; some emerged in the majority of infants not until the 5th (“laugh”) or 7th month (“babble”). Age-related changes in acoustic structure were found in only 4 call types (“discomfort cry,” “short discomfort cry,” “wail,” “moan”). The acoustic changes were characterized mainly by an increase in harmonic-to-noise ratio and homogeneity of the call, a decrease in frequency range and a downward shift of acoustic energy from higher to lower frequencies. Emotion-related differences were found in the acoustic structure of single call types as well as in the frequency of occurrence of different call types. A change from positive to negative emotional state was accompanied by an increase in call duration, frequency range, and peak frequency (frequency with the highest amplitude within the power spectrum). Negative emotions, in addition, were characterized by a significantly higher rate of “crying,” “hic” and “ingressive vocalizations” than positive emotions, while positive emotions showed a significantly higher rate of “babble,” “laugh,” and “raspberry.”  相似文献   

20.
Z. L. Wang   《Surface science》1996,360(1-3):180-186
Lanthanum-aluminate (LaAlO3) is one of the optimum substrates for epitaxic growth of thin oxide films. In this paper, the structures of the {100} and {110} surfaces of annealed LaAlO3 are studied using reflection electron microscopy (REM). 010 steps have been observed on {100}, these are the lowest energy steps. The {100} surface is atomically flat, but the {110} surfaces exhibit high-density fine structures distributed on large surface terraces. These fine structures correspond to the formation of small width (100) and (010) facets on the (110) surface. A growth model is given to interpret the formation of large steps and large terraces on the {110} surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号