首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factor X is a blood clotting protein that associates at membrane surfaces to become activated during the coagulation cascade. A molecular level understanding of the protein-membrane phospholipid interactions has not been reached, although it is thought that the protein binds to phospholipids in the presence of calcium through a bridge with the Gla (gamma-carboxyglutamic acid) domain on the protein. In this work, phospholipid Langmuir monolayers have been utilized as model membranes to study factor X association with phospholipid membrane components. Surface pressure measurements indicate that subphase addition of sodium, magnesium, and calcium ions enhances protein penetration of the lipid monolayer, with the largest association found with calcium ions in the subphase. Fluorescence microscopy images collected after protein penetration of lipid monolayers indicate monolayer condensation in the presence of sodium and magnesium ions. Aggregation of lipid domains is induced when calcium is in the subphase, indicating binding-induced flocculation of surface lipid aggregates. Calcium binding to factor X likely causes a conformational change which allows protein-membrane interaction via hydrophobic association with lipid molecules.  相似文献   

2.
Phospholipid monolayers adsorbed at an air-water interface are model cell membranes and have been used in this work to study interactions with blood-clotting proteins. Factor I (non-membrane binding) was used as a control protein, and its association with L-alpha-dipalmitoylphosphatidylcholine Langmuir monolayers was compared to factor VII, a membrane-binding protein. Fluorescence micrographs indicated that factor I penetration of the lipid monolayers in the phase transition region occurred extensively, causing condensation of the lipid film. The association of factor I with phospholipid monolayers was deemed nonspecific. Factor VII was shown to associate with the periphery of lipid domains in the absence of calcium ions, causing flattening of domain edges. In the presence of calcium, factor VII induced expansion of the lipid monolayer. This effect is a specific interaction attributed to exposure of hydrophobic residues upon calcium binding, followed by protein association with lipid hydrocarbon chains. Copyright 2001 Academic Press.  相似文献   

3.
The presence of microdomains, called lipid rafts, in biological membranes is usually explained by lateral segregation between specific lipids and proteins. These rafts present similarities with the membrane domains isolated by their non-ionic detergent-resistance at 4 degrees C. They are enriched in sphingomyelin and cholesterol as compared with the outer leaflet of eukaryotic cell membranes. To understand the role played by the lipids enriched in rafts in their resistance to solubilization by detergents, the interactions between these lipids and the non-ionic detergent Triton X-100 were studied by using different lipid monolayers at the air-water interface. The influence of Triton X-100 on the Langmuir isotherms (i.e. surface pressure/area isotherms) of monolayers containing sphingomyelin and cholesterol at different mole ratios was analyzed and the results were compared with the influence of Triton X-100 on monolayers containing a phosphatidylcholine bearing a saturated and an unsaturated fatty acid (i.e. palmitoyloleylphosphatidylcholine) and cholesterol. This phosphatidylcholine was chosen since the phosphatidylcholines present in rafts isolated from bovine kidney could contain about 50% of saturated fatty acids. Triton X-100 induces an increase in the condensing effect observed as compared with ideal mixture of phospholipid/cholesterol. Triton X-100-induced changes in the morphology of the monolayers were visualized by Brewster angle microscopy, which confirmed the differences of behavior observed by analyzing the isotherms.  相似文献   

4.
The binding of peripheral proteins to membranes results in different biological effects. The large diversity of membrane lipids is thought to modulate the activity of these proteins. However, information on the selective binding of peripheral proteins to membrane lipids is still largely lacking. Lipid monolayers at the air/water interface are useful model membrane systems for studying the parameters responsible for peripheral protein membrane binding. We have thus measured the maximum insertion pressure (MIP) of two proteins from the photoreceptors, Retinitis pigmentosa 2 (RP2) and recoverin, to estimate their binding to lipid monolayers. Photoreceptor membranes have the unique characteristic that more than 60% of their fatty acids are polyunsaturated, making them the most unsaturated natural membranes known to date. These membranes are also thought to contain significant amounts of saturated phospholipids. MIPs of RP2 and recoverin have thus been measured in the presence of saturated and polyunsaturated phospholipids. MIPs higher than the estimated lateral pressure of biomembranes have been obtained only with a saturated phospholipid for RP2 and with a polyunsaturated phospholipid for recoverin. A new approach was then devised to analyze these data properly. In particular, a parameter called the synergy factor allowed us to highlight the specificity of RP2 for saturated phospholipids and recoverin for polyunsaturated phospholipids as well as to demonstrate clearly the preference of RP2 for saturated phospholipids that are known to be located in microdomains.  相似文献   

5.
The supramolecular packing mode of physisorbed monolayers built up by chiral isophthalic acid derivatives and coadsorbed achiral solvent molecules was imaged at the liquid/graphite interface with scanning tunneling microscopy (STM). The picture on the right shows the submolecularly resolved STM image of an enantiomorphous domain composed of the R enantiomer of the isophthalic acid derivative studied and 1-heptanol molecules; the latter express the chirality of the monolayer. Upon adsorption a racemic mixture is separated into enantiomorphous domains.  相似文献   

6.
The lateral membrane organization and phase behavior of the lipid mixture DMPC(di-C(14))/DSPC(di-C(18))/cholesterol (0-33 mol %) with and without an incorporated fluorescence-labeled palmitoyl/farnesyl dual-lipidated peptide, BODIPY-Gly-Cys(Pal)-Met-Gly-Leu-Pro-Cys(Far)-OMe, which represents a membrane recognition model system for Ras proteins, was studied by two-photon excitation fluorescence microscopy. Measurements were performed on giant unilamellar vesicles (GUVs) over a large temperature range, ranging from 30 to 80 degrees C to cover different lipid phase states (all-gel, fluid/gel, liquid-ordered, all-fluid). At temperatures where the fluid-gel coexistence region of the pure binary phospholipid system occurs, large-scale concentration fluctuations appear. Incorporation of cholesterol levels up to 33 mol % leads to a significant increase of conformational order in the membrane system and a reduction of large domain structures. Adding the peptide leads to dramatic changes in the lateral organization of the membrane. With cholesterol present, a phase separation is induced by a lipid sorting mechanism owing to the high affinity of the lipidated peptide to a fluid, DMPC-rich environment. This phase separation leads to the formation of peptide-containing domains with high fluorescence intensity that become progressively smaller with decreasing temperature. As a result, the local concentration of the peptide increases steadily within the confines of the shrinking domains. At the lowest temperatures, where the acyl-chain order parameter of the membrane has already drastically increased and the membrane achieves a liquid-ordered character, an efficient lipid sorting mechanism is no longer supported and aggregation of the peptide into small clusters prevails. We can conclude that palmitoyl/farnesyl dual-lipidated peptides do not associate with liquid-ordered or gel-like domains in phase-separated bilayer membranes. In particular, the study shows the interesting ability of the peptide to induce formation of fluid microdomains at physiologically relevant cholesterol concentrations, and this effect very much depends on the concentration of fluid vs ordered lipid molecules.  相似文献   

7.
Cholesterol/phospholipid interactions in hybrid bilayer membranes   总被引:1,自引:0,他引:1  
The interactions between cholesterol and saturated phospholipids in hybrid bilayer membranes (HBMs) were investigated using the interface-sensitive technique of vibrational sum frequency spectroscopy (VSFS). The unique sensitivity of VSFS to order/disorder transitions of the lipid acyl chains was used to determine the main gel to liquid crystal phase transition temperature, Tm, for HBMs of binary cholesterol/phospholipid mixtures on octadecanethiolate self-assembled monolayers. The phase transition temperature and the breadth of the transition were shown to increase with cholesterol content, and the phase boundaries observed in the cholesterol/phospholipid HBMs were comparable to the published phase diagrams of binary cholesterol/phospholipid vesicles. A thermodynamic assessment of the cooperative units of the HBM phase transitions revealed the presence of <10 nm diameter domains that were independent of the cholesterol composition.  相似文献   

8.
Shapes and orientational deformation of a lipid monolayer domain have been analyzed taking into account the surface pressure, line tension, and electrostatic energy due to the spontaneous polarization and electric quadrupole density generated from the domain. The electrostatic energy due to the generation of spontaneous polarization and electric quadrupole density contributes to the formation of orientational deformation as the Frank elastic energy and spontaneous splay, respectively. Since the orientational configuration of the electric quadrupole density and in-plane spontaneous polarization is dependent on the molecular chirality, and the positive splay deformation of electric quadrupole density is induced by the spontaneous splay, the bending direction of in-plane spontaneous polarization depends on the chirality of constituent lipids. The electrostatic energy due to the in-plane spontaneous polarization is dependent on the orientational deformation of in-plane spontaneous polarization, and bends the domain shape towards the bending direction of the in-plane spontaneous polarization. It has been demonstrated that the chiral dependence of the domain shapes of lipid monolayers originated from the chiral dependence of orientational structure due to the electric quadrupole density.  相似文献   

9.
For the first time, one of the two enantiomers of cholesterol (ent-cholesterol) has been synthesized by a synthetic route that starts from a precursor containing the D-ring and entire side chain of cholesterol. As part of the reported synthetic route, a method of general utility for the large scale (>10 g) preparation of each enantiomer of [1 alpha(R*),7a alpha]-1-(1,5-dimethylhexyl)-1,2,3,6,7,7a-hexahydro-7a-methyl-5H-inden-5-one, C,D ring-side chain synthons that can be used for the synthesis of enantiomers of vitamin D(3), cholesterol, and their analogues was also developed. Using the enantiomer of the C,D-ring side-chain synthon that leads to ent-cholesterol, the A- and B-rings were elaborated from a linear fragment that is sequentially cyclized to form the steroid B- and A-rings. Using this route, ent-cholesterol was prepared in 23 steps from the methyl ester of (1 alpha,5 alpha,6 alpha)-(+/-)-6-methyl-2-oxo-bicyclo[3.1.0]hexane-1-carboxylic acid in a total yield of 2.6%.  相似文献   

10.
We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.  相似文献   

11.
The role of dipolar interactions in determining the lipid domain shapes at the air-water interface with a change in the chemical structure of the head groups of lipids is theoretically studied. The phospholipids considered are dipalmitoylphosphatidylcholine (D,L-DPPC) and dipalmitoylphosphatidylethanolamine (DPPE). Despite closely similar chemical structures, the domains of the two lipids are strikingly different. The DPPC domains exhibit elongated arms, while the DPPE domains are nearly round-shaped. To compare the dipolar repulsions in the domains of the two phospholipids, different energy-minimized conformers of DPPC and DPPE are studied using the semiempirical quantum chemical method (PM3). It is found that the dipole moment of DPPC is significantly larger than that of DPPE. The in-plane and out-of-plane components of the dipole moments are calculated using grazing incidence X-ray diffraction data at different surface pressure values, as used in the experiment. The result indicates that the magnitude of the dipolar interaction is significantly larger in DPPC than that in DPPE over the surface pressure range considered. The enhanced dipolar repulsion corroborates well with the difference in the domain shapes in the two phospholipid monolayers. The larger dipolar repulsion in DPPC leads to development of elongated domain arms, while relatively less dipolar repulsion allows a closed shape of the condensed-phase DPPE domains.  相似文献   

12.
Cellular membranes can take on a variety of shapes to assist biological processes including endocytosis. Membrane-associated protein domains provide a possible mechanism for determining membrane curvature. We study the effect of tethered streptavidin protein crystals on the curvature of giant unilamellar vesicles (GUVs) using confocal, fluorescence, and differential interference contrast microscopy. Above a critical protein concentration, streptavidin domains align and percolate as they form, deforming GUVs into prolate spheroidal shapes in a size-dependent fashion. We propose a mechanism for this shape transformation based on domain growth and jamming. Osmotic deflation of streptavidin-coated GUVs reveals that the relatively rigid streptavidin protein domains resist membrane bending. Moreover, in contrast to highly curved protein domains that facilitate membrane budding, the relatively flat streptavidin domains prevent membrane budding under high osmotic stress. Thus, crystalline streptavidin domains are shown to have a stabilizing effect on lipid membranes. Our study gives insight into the mechanism for protein-mediated stabilization of cellular membranes.  相似文献   

13.
In contrast to the majority of all known cell types, Gram-negative bacteria have a second membrane, the outer membrane, which is an asymmetric bilayer composed of a phospholipid inner leaflet and a glycolipid outer leaflet. The glycolipid layer, in most cases being composed of a lipopolysaccharide (LPS), is the first target for antimicrobial agents. To get a basic understanding of the membrane-forming properties of LPS, we reconstituted monolayers of deep rough mutant LPS from Salmonella enterica serova Minnesota (R595 LPS), its lipid A moiety, and of the synthetic tetraacyl compound 406 (resembling the biosynthetic lipid A precursor IVa) at the air-water interface of a film balance. The liquid-expanded (LE) and liquid-condensed (LC) domains in the coexisting region were investigated with epifluorescence and, after transferring the monolayer onto mica, as a Langmuir-Blodgett film, with atomic force microscopy (AFM). The fluorescence and the AFM images showed identical domain structure. The higher resolution of the AFM images, however, contained more topographic details. Different heights and adhesion forces between the LE and LC domains could be observed. Differences in the adhesion forces between the AFM tip and the sample were determined in the repulsive and the attractive dynamic scanning modes, demonstrating the importance of a careful interpretation of height images. We propose that an increase in the lateral pressure causing the LE-LC transition of the monolayers leads to a reorientation of the molecules due to a tilt angle between the alkyl chains and the diglucosamine backbone. LPS monolayers have been utilized as a simplified reconstitution model of the outer membrane to study the interaction with antimicrobial agents. We investigated the action of the polycationic peptide polymyxin B (PMB) and found dramatic influences on the domain structures.  相似文献   

14.

Background  

The first target of antimicrobial peptides (AMPs) is the bacterial membrane. In the case of Gram-negative bacteria this is the outer membrane (OM), the lipid composition of which is extremely asymmetric: Whereas the inner leaflet is composed of a phospholipid mixture, the outer leaflet is made up solely from lipopolysaccharides (LPSs). LPS, therefore, represents the first target of AMPs. The binding and intercalation of polycationic AMPs is driven by the number and position of negatively charged groups of the LPS. Also, proteins other than cationic AMPs can interact with LPS, e.g. leading eventually to a neutralization of the endotoxic effects of LPS. We compared different biophysical techniques to gain insight into the properties of the electrical surface potentials of lipid monolayers and aggregates composed of LPSs and various phospholipids and their interaction with peptides and proteins.  相似文献   

15.
Lipid raft/domain formation may arise as a result of the effects of specific sterols on the physical properties of membranes. Here, using molecular dynamics simulation, we examine the effects of three closely-related sterols, ergosterol, cholesterol, and lanosterol, at a biologically relevant concentration (40 mol %) on the structural properties of a model dipalmitoyl phosphatidylcholine (DPPC) membrane at 309 and 323 K. All three sterols are found to order the DPPC acyl tails and condense the membrane relative to the DPPC liquid-phase membrane, but each one does this to a significantly different degree. The smooth alpha-face of ergosterol, together with the presence of tail unsaturation in this sterol, leads to closer interaction of ergosterol with the lipids and closer packing of the lipids with each other, so ergosterol has a higher condensing effect on the membrane, as reflected by the area per lipid. Moreover, ergosterol induces a higher proportion of trans lipid conformers, a thicker membrane, and higher lipid order parameters and is aligned more closely with the membrane normal. Ergosterol also positions itself closer to the bilayer/water interface. In contrast, the rough alpha-face of lanosterol leads to a less close interaction of the steroid ring system with the phospholipid acyl chains, and so lanosterol orders, straightens, and packs the lipid acyl chains less well and is less closely aligned with the membrane normal. Furthermore, lanosterol lies closer to the relatively disordered membrane center than do the other sterols. The behavior of cholesterol in all the above respects is intermediate between that of lanosterol and ergosterol. The findings here may explain why ergosterol is the most efficient of the three sterols at promoting the liquid-ordered phase and lipid domain formation and may also furnish part of the explanation as to why cholesterol is evolutionarily preferred over lanosterol in higher-vertebrate plasma membranes.  相似文献   

16.
The aggregation properties of an antibiotic membrane-active peptide alamethicin at the air-water interface have been studied using interfacial rheology and fluorescence microscopy techniques. Fluorescence microscopy of alamethicin monolayers revealed a coexistence of liquid expanded (LE) and solid phases at the surface concentrations studied. Interfacial oscillatory shear measurements on alamethicin monolayers indicate that its viscoelastic properties are determined by the area fraction of the solid domains. The role of zwitterionic phospholipids dioleoylphosphatidyl choline (DOPC) and dioleoylphosphatidyl ethanolamine (DOPE) on the peptide aggregation behavior was also investigated. Fluorescence microscopy of alamethicin/phospholipid monolayers revealed an intermediate phase (I) in addition to the solid and LE phase. In mixed monolayers of phospholipid (L)/alamethicin (P), with increase in L/P, the monolayer transforms from a viscoelastic to a viscous fluid with the increase in area fraction of the intermediate phase. Further, a homogeneous mixing of alamethicin/lipid molecules is observed at L/P > 4. Our studies also confirm that the viscoelasticity of alamethicin/phospholipid monolayers is closely related to the alamethicin/phospholipid interactions at the air-water interface.  相似文献   

17.
Lecithin:retinol acyltransferase (LRAT) is a 230 amino acid membrane-associated protein which catalyzes the esterification of all-trans-retinol into all-trans-retinyl ester. A truncated form of LRAT (tLRAT), which contains the residues required for catalysis but which is lacking the N- and C-terminal hydrophobic segments, was produced to study its membrane binding properties. Measurements of the maximum insertion pressure of tLRAT, which is higher than the estimated lateral pressure of membranes, and the positive synergy factor a argue in favor of a strong binding of tLRAT to phospholipid monolayers. Moreover, the binding, secondary structure and orientation of the peptides corresponding to its N- and C-terminal hydrophobic segments of LRAT have been studied by circular dichroism and polarization-modulation infrared reflection absorption spectroscopy in monolayers. The results show that these peptides spontaneously bind to lipid monolayers and adopt an α-helical secondary structure. On the basis of these data, a new membrane topology model of LRAT is proposed where its N- and C-terminal segments allow to anchor this protein to the lipid bilayer.  相似文献   

18.
The differential organization of lipid components in a multicomponent membrane leads to formation of domains having diverse composition and size. Cholesterol and glycosphingolipids are known to be important components of such lateral assembly. We report here the ordering of cholesterol around ganglioside GM1 and the nature of the cluster from an all-atom simulation of a ternary lipid system. The results are compared with a binary bilayer and a pure phospholipid bilayer. The difference in molecular rearrangements in ternary and binary lipid mixture shows the role of GM1 in the rearrangement of cholesterol. Calculation of the radial distribution function, rotational reorientation, and residence time analysis of cholesterol shows that cholesterol is preferentially accumulating near gangliosides, while the lateral translational motion, rotational diffusion, and order parameter of phospholipids characterize the amount of rigidity imparted on the phospholipid bilayer.  相似文献   

19.
To probe the effect of lipid fluorination on the formation of lipid domains in phospholipid bilayers, several new fluorinated and non-fluorinated synthetic lipids were synthesised, and the extent of phase separation of these lipids from phospholipid bilayers of different compositions was determined. At membrane concentrations as low as 1% mol/mol, both fluorinated and non-fluorinated lipids were observed to phase separate from a gel-phase (solid ordered) phospholipid matrix, but bilayers in a liquid disordered state caused no phase separation; if the gel-phase samples were heated above the transition temperature, then phase separation was lost. We found incorporation of perfluoroalkyl groups into the lipid enhanced phase separation, to such an extent that phase separation was observed from cholesterol containing bilayers in the liquid ordered phase.  相似文献   

20.
A model biomimetic system for the study of protein reconstitution or drug interactions should include lipid rafts in the mixed lipid monolayer, since they are usually the domains embedding membrane proteins and peptides. Four model lipid films composed of three components: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), cholesterol (Chol) and sphingomyelin (SM) mixed in different molar ratios were proposed and investigated using surface pressure measurements and thermodynamic analysis of the monolayers at the air–water interface and imaged by Brewster angle microscopy. The ternary monolayers were transferred from the air–water onto the gold electrodes to form bilayer films and were studied for the first time by electrochemical methods: alternative current voltammetry and electrochemical impedance spectroscopy and imaged by atomic force microscopy. In excess of DOPC, the ternary systems remained too liquid for the raft region to be stable, while in the excess of cholesterol the layers were too solid. The layers with SM in excess lead to the formation of Chol:SM complexes but the amount of the fluid matrix was very low. The equimolar content of the three components lead to the formation of a stable and well-organized assembly with well-developed raft microdomains of larger thickness, surrounded by the more fluid part of the bilayer. The latter is proposed as a convenient raft model membrane for further physicochemical studies of interactions with drugs or pollutants or incorporation of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号