首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rigidity (G) of colloidal crystals in organic solvents of acetonitrile and nitrobenzene has been measured by reflection spectroscopy in sedimentation equilibrium. The colloidal spheres used are the silica spheres (136 nm in diameter) modified on their surfaces with polymers, poly(maleic anhydride-co-styrene) [P(MA-ST)], poly(methyl methacrylate) (PMMA), or polystyrene (PST). Log G increases linearly with the slope of unity as log N (number density of colloidal spheres) increases. The mean values of the b-factor, which is the fluctuation parameter in crystal lattices and should be smaller than 0.1 according to the Lindeman's rule, are 0.045±0.003, 0.039±0.007, and 0.038±0.003 for P(MA-ST)/SiO2, PMMA/SiO2, and PST/SiO2, respectively. These values are larger than that of colloidal crystals of mother silica spheres in the deionized aqueous suspension, 0.028. These results support the important role of the excluded volume effects from the polymer layers formed around the silica surfaces. However, contribution of the excluded volume effects from the electrical double layers formed around the spheres in the organic solvents is also effective in the colloidal crystallization. Electronic Publication  相似文献   

2.
Electro-optic responses of colloidal crystals consist of poly(maleic anhydride-co-styrene)-modified silica spheres (P(MA-ST)/SiO2) in acetonitrile and the crystals immobilized with a gelator, N-benzyloxycarbonyl-L-isoleucilaminooctadecane (Z-L-Ile-C-18), are studied by reflected-light intensity measurements and time-resolved reflection spectroscopy. Application of an alternating electric field deforms P(MA-ST)/SiO2 crystal lattices reversibly. The response waveforms from the crystals are dependent on the frequency and strength of the applied electric field; similar dependencies have been qualitatively observed for the colloidal crystals consisting of polystyrene or silica spheres in aqueous media in our previous studies. Both gelated and ungelated P(MA-ST)/SiO2 crystals change the reflection intensity, however, the amplitude is larger for the latter. The small response for the gelated P(MA-ST)/SiO2 crystals is attributed to the higher elastic modulus (G). The G value of the gelated P(MA-ST)/SiO2 crystals in acetonitrile is estimated from the change in the inter-sphere distance to be 8.0 Pa, which is about 2.3 and 2.4 times larger than that for ungelated P(MA-ST)/SiO2 crystals in acetonitrile and colloidal silica crystals in aqueous media, respectively.  相似文献   

3.
 Polymer modification of monodispersed colloidal silica (0.5 μm) with poly(maleic anhydride-co-styrene) (P(MA-ST)) and poly (maleic anhydride-co-methyl methacrylate) (P(MA-MMA)) and application of the composite particles to biomaterial carriers were investigated. The reaction of bovine serum albumin(BSA)-immobilized P(MA-MMA)/SiO2 with the anti-BSA antibody showed higher sensitivity in immunological agglutination test than BSA–P(MA-ST)/SiO2, though immobilization efficiency of BSA on P(MA-MMA)/SiO2 was lower than that on P(MA-ST)/SiO2. Alkaline phosphatase and glucose oxidase immobilized on the composite particles exhibited extremely low activities, but α-chymotrypsin immobilized on P(MA-MMA)/SiO2 and its derivative particles showed the relative activity of 12.5% and 16.1% to the native enzyme, respectively. Grafting of a hydrophilic polymer of poly(acrylic acid) to P(MA-ST)/SiO2 let to an increase of the immobilized α-chymotrypsin activity to give the maximum relative activity of 55.5%. Received: 23 August 1996 Accepted: 16 October 1996  相似文献   

4.
Three-dimensional photonic crystals made of close-packed polymethylmethacrylate (PMMA) spheres or air spheres in silica, titania and ceria matrices have been fabricated and characterized using SEM, XRD, Raman spectroscopy and UV–Vis transmittance measurements. The PMMA colloidal crystals (opals) were grown by self-assembly from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centred cubic (fcc) array, and UV–Vis measurements show that the colloidal crystals possess pseudo photonic band gaps in the visible and near-IR regions. Inverse opals were prepared by depositing silica (SiO2), titania (TiO2) or ceria (CeO2) in the voids of the PMMA colloidal crystals using sol-gel procedures, then calcining the resulting structure at 550 °C to remove the polymer template. The resulting macroporous materials showed fcc ordering of air spheres separated by thin frameworks of amorphous silica, nanocrystalline titania or nanocrystalline ceria particles, respectively. Optical measurements confirmed the photonic nature of the inverse opal arrays. UV–Vis data collected for the opals and inverse opals obeyed a modified Bragg’s law expression that considers both diffraction and refraction of light by the photonic crystal architectures. The versatility of the colloidal crystal template approach for the fabrication of macroporous oxide structures is demonstrated.  相似文献   

5.
Time-resolved reflection spectroscopic measurements are made for the kinetic analyses of the nucleation and growth processes of soft-type colloidal crystals of silica spheres (110 nm in diameter) in the presence of sodium chloride. Fast-scanning reflection spectra are taken using a continuous circulating-type stopped-flow cell system. The cell system is composed of a peristaltic pump and a quartz flow cell, which are connected with a PharMed tube in a closed circuit. The volume fraction of the spheres is 0.028. Induction periods range from 0.2 to 1.3 s and increase as salt concentration increases. Nucleation rates are 1 × 104 to 7 × 104 spheres/mm3s and decrease as salt concentration increases. The crystallization process has been observed from the sharpening and the increase in intensity of the reflection peaks. The crystal growth rate in the absence of salt is 23 μm/s, and decreases as salt concentration increases. The importance of electrostatic intersphere repulsion through the electrical double layers and the cooperative and synchronous fluctuation of colloidal spheres in the crystallization processes is supported. Received: 15 July 1998 Accepted in revised form: 18 September 1998  相似文献   

6.
Colloidal crystallization of copolymer-grafted silica containing ferrocenyl groups in organic solvents and effects of ferrocenyl groups on effective refractive index of colloidal crystal systems were investigated. Poly(ferrocenyl metharylate (FeMA)-co-methyl methacrylate (MMA)-grafted silica gave colloidal crystallization in dimethylformamide and acetonitrile. The colloidal crystals exhibited characteristic coloration due to cooperative effects of specific absorption at 400–500 nm by ferrocenyl group and transmission of 700–800-nm light through the crystals. It was observed that effective refractive index of colloidal crystals systems of poly(FeMA-co-MMA)-grafted silica was higher than that of poly(MMA)-grafted silica. Normalized effective refractive index of the system linearly increased with mole fraction of FeMA in grafted copolymer. However, poly(FeMA-block-MMA) did not bring effective increase of the index because of bias formation of ferrocenyl group on silica.  相似文献   

7.
Diphasic cordierite gels were prepared from colloidal silica, aluminum and magnesium nitrates and citric acid. The mechanism of xerogel decomposition was studied by infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA). The thermal decomposition of the xerogel forms a solid mixture of MgO, Al2O3 and SiO2 at around 250 °C. Cordierite crystallization was studied by X-ray diffraction (XRD) and differential thermal analysis (DTA). Xerogels were initially thermally treated, and this sample crystallized to μ-cordierite at 850 °C, at 900 °C α-cordierite crystallizes and at 1150 °C α-cordierite is the major phase and μ-cordierite is totally consumed. The apparent activation energy for cordierite crystallization process was determined based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory, Ligero methods and the Arrhenius law for dependence of activation energy with temperature. The apparent activation energy was (466.8 ± 34.3) kJ/mol, the exponent of Avrami was (1.9 ± 0.2) and the frequency factor was (1.55 × 1020) s−1. The Avrami value indicates a nucleation controlled process, which can be a consequence of the high xerogel homogeneity, a consequence of the early and simultaneous formation of the MgO, Al2O3 and SiO2 mixture.  相似文献   

8.
The structure, crystal growth kinetics and rigidity of colloidal crystals of core–shell-type latex spheres (diameters 280–330 nm) with differences in shell rigidity have been studied in aqueous suspension, mainly by reflection spectroscopy. The suspensions were deionized exhaustively for more than 2 years using mixed-bed ion-exchange resins. The five kinds of core–shell spheres examined form colloidal crystals, where the critical sphere concentrations, c, of crystallization (or melting) are high and range from 0.01 to 0.06 in volume fraction. Nearest-neighbor intersphere distances in the crystal lattice agree satisfactorily with values calculated from the sphere diameter and concentration. The crystal growth rates are between 0.1 and 0.3 s–1 and decrease slightly as the sphere concentration increases, indicating that the crystal growth rates are from the secondary process in the colloidal crystallization mechanism, corresponding to reorientation from metastable crystals formed in the primary process and/or Ostwald-ripening process. The rigidities of the crystals range from 2 to 200 Pa, and increase sharply as the sphere concentration increases. The g factor, the parameter for crystal stability, is around 0.02 irrespective of the sphere concentration and/or the kind of core–shell sphere. There are no distinct differences in the structural, kinetic and elastic properties among the colloidal crystals of the different core–shell-type spheres, showing that the internal sphere structure does not affect the properties of the colloidal crystals. The results show that colloidal crystals form in a closed container owing to long-range repulsive forces and the Brownian movement of colloidal spheres surrounded by extended electrical double layers and that their formation is not influenced by the rigidity and internal structure of the spheres.  相似文献   

9.
The size effect of silica nanoparticles (SiO2) on thermal decomposition of poly(methylmethacrylate) (PMMA) was investigated by the controlled rate thermogravimetry. Thermal degradation temperature of PMMA–SiO2 composites depended on both fraction and size of SiO2, the thermal degradation temperature of 23 nm (diameter) SiO2–PMMA (6.1 wt%) was 13.5 °C higher than that of PMMA. The thermal stabilities of 17 nm SiO2–PMMA (3.2 wt%) and 13 nm SiO2–PMMA (4.8 wt%) were 21 and 23 °C, respectively, higher than that of PMMA without SiO2. The degree of degradation improvement was increased linearly with the surface area of SiO2. The number of surface hydroxyl group in unit volume of SiO2 particle increased with increasing the specific surface area of SiO2, and the interaction between hydroxide group of SiO2 and carbonyl group of PMMA had an important role to improve the thermal stability of PMMA.  相似文献   

10.
 Gigantic colloidal single crystals (2–6 mm) are formed for fluorine-containing polymer spheres (120–210 nm in diameter) in exhaustively deionized aqueous suspensions. The spheres used are poly(tetrafluoroethylene) (PTFEA and PTFEB), copolymer of tetrafluoroethylene and perfluorovinylether (PFA) and copolymer of tetrafluoroethylene and perfluoropropylene (PTP). The phase diagrams of these spheres are obtained in the deionized suspensions and also in the presence of sodium chloride for PFA. The critical sphere concentrations of crystal melting (φ c) for these spheres are around 0.0006 in volume fraction, which are close to, but slightly larger than, those of monodispersed polystyrene spheres (φ c ≈ 0.00015) and colloidal silica spheres(φ c = 0.0002–0.0004) reported previously. The crystals are largest when the sphere concentrations are a bit higher than the φ c value and their size decreases as the sphere concentration increases. Reflection spectra are taken in sedimentation equilibrium as a function of the height from the bottom of the suspension. The static elastic modulus is estimated to be 10.8 and 28.7 Pa for PTFEA and PTP spheres at the sphere concentrations 0.00325 and 0.00322 in volume fraction, respectively. Received: 27 October 1999 Accepted in revised form: 16 November 1999  相似文献   

11.
Cristobalite with ordered interstitial dual-sized mesopores was synthesized through the crystallization of silica colloidal crystals composed of monodispersed amorphous silica nanoparticles. An aqueous solution containing both a flux (Na2O) and a carbon precursor (an aqueous low-molecular weight phenolic resin) was infiltrated into the interstices of silica colloidal crystals. The organic fraction in the nanocomposite was further polymerized and subsequently carbonized in an Ar flow at 750 °C to reinforce the colloidal crystal structure. The thermal treatment resulted in the crystallization of the colloidal crystals into cristobalite while retaining the porous structure. The cristobalite-carbon nanocomposite was calcined in air to remove the carbon and create interstitial ordered mesopores in the cristobalite. The surfaces of crystalline mesoporous silica are quite different from those of various ordered mesoporous silica with amorphous frameworks; thus, the present findings will be useful for a precise understanding and control of the interfaces between the mesopores and silica networks.  相似文献   

12.
以聚甲基丙烯酸甲酯(PMMA)胶晶为大孔模板、嵌段共聚物P123为介孔模板,利用双模板剂法进行了三维有序大孔-介孔二氧化硅材料的制备研究。采用SEM、TEM、低角XRD以及N2吸脱附技术对样品进行了表征。结果表明,通过简单的调控PMMA胶晶模板的组装过程,就可以调变合成材料中的大孔结构,从而轻松地实现可控的制备出具有网状或者层状结构的三维有序大孔-介孔二氧化硅材料,并提出了其可能的形成机理。此外,所制备的三维有序大孔-介孔二氧化硅样品均具有较大的BET比表面积(>550m2·g-1),大孔孔径200nm左右,介孔孔径分布集中于3.5nm左右。  相似文献   

13.
Convectional, sedimentation, and drying dissipative structural patterns formed during the course of drying aqueous colloidal crystals of silica spheres (183 nm in diameter) have been studied in a glass dish and a watch glass. Spoke-like convectional patterns were observed in a watch glass. The broad ring sedimentation patterns formed especially in a glass dish within 30–40 min in suspension state by the convectional flow of water and colloidal spheres. The macroscopic broad ring drying patterns formed both in a glass dish and a watch glass. The ratio of the broad ring size in a glass dish against the initial size of suspension, i.e., inner diameter of the glass dish, d f/d i, in this work, were compared with previous work of other silica spheres having sizes of 305 and 560 nm and 1.2 μm in diameter. The d f/d i values in a glass dish increased as sphere concentration increased, but were rather insensitive to colloidal size. The d f/d i values on a watch glass also increased as sphere concentration increased, and further increased as sphere size decreased. Segregation effect by sphere size in a watch glass takes place by the balancing between the upward convectional flow of spheres in the lower layers of the liquid and the downward sedimentation of spheres. Colorful microscopic drying patterns formed both in a glass dish and a watch glass.  相似文献   

14.
Non-isothermal crystallization and crystalline structure Of PP/POE blends   总被引:4,自引:0,他引:4  
Polypropylene (PP) /ethylene-octene copolymer (POE) blends with different content of POE were prepared by mixing chamber of a Haake torque rheometer. The crystallization behaviors and crystal structure of PP/POE blends were systematically investigated by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized optical microscopy (POM). The results showed that PP spherulites became defective and the crystallization behavior was influenced intensely with the introduction of POE. At the low content of POE, the addition of POE decreases the apparent incubation period (Δt i) and the apparent total crystallization period (Δt c) of PP in blends due to the heterogeneous nucleation of POE, and small amount of β-form PP crystals form because of the existence of POE. However, at high content of POE, the addition of POE decreases the mobility of PP segments due to their strong intermolecular interaction and chain entanglements, resulting in retarding the crystallization of PP, decreasing in the amount of β-form PP crystals, and increasing in Δt i and Δt c of PP in blends.  相似文献   

15.
Water-borne raspberry-like PMMA/SiO2 nanocom-posite particles were prepared via free radical copolymerization of methyl methacrylate (MMA) with 1-vinylimidazole (1-VID) in the presence of ultrafine aqueous silica sols. The acid-base interaction between hydroxyl groups (acidic) of silica surfaces and amino groups (basic) of 1-VID was strong enough for promoting the formation of long-standing stable PMMA/SiO2 nanocomposite particles when 10 mol% or more 1-VID as auxiliary monomer was used. The average particle sizes and the silica contents of the nanocomposite particles were in the ranges from 120–330 nm and 15%–20%, respectively. TEM and SEM observations indicated a raspberry-like morphology of the obtained nanocomposite particles. __________ Translated from Chemical Journal of Chinese Universities, 2005, 26(7) (in Chinese)  相似文献   

16.
The effect of the time passed after tetraethoxysilane treatment with ammonia on the diameter of particles produced by tetraethoxysilane hydrolysis in alcohol-water-ammonia media is studied. The regulation the time passed after of tetraethoxysilane treatment results in the synthesis of submicron monodisperse spherical silica particles with diameters differing by a factor of two. The difference is explained by the formation of SiO2 particles with sizes of 10–100 nm in tetraethoxysilane during 10–30 h after treatment with ammonia. These particles enhance the concentration of nucleation centers in a reaction mixture, thus decreasing the final size of monodisperse silica spheres. Opal films with a high structural perfection and pronounced photonic crystal properties are grown based on the obtained monodisperse SiO2 particles.  相似文献   

17.
The effects of the concentration of polyoxyethylene octylphenyl ether (OP-10) as a nonionic surfactant and the molecular weight of polymers (polystyrene (PS) and poly(methyl methacrylate) (PMMA)) on the morphology of anisotropic PS/PMMA composite particles were investigated. In the case of polymers with lower molecular weight (M w ≈ 6.0 × 104 g/mol), the PS/PMMA composite particles have dimple, via acorn, to hemispherical shapes along with the increase of the OP-10 concentration. On the other hand, when the polymers have higher molecular weight (M w ≈ 3.3 × 105 g/mol), the morphology of PS/PMMA composite particles changed from dimple, via hemispherical, to snowman-like structure while the concentration of OP-10 was increased. Furthermore, thermodynamic analysis was first simply made by spreading coefficients, and the results indicated that both the concentration of OP-10 aqueous solution and the molecular weight of polymers were very important to the final morphology of anisotropic composite particles.  相似文献   

18.
The crystallization of K2O·TiO2·3GeO2 glass under non-isothermal condition was studied. In powdered glass with particle sizes less than 0.15 mm, surface crystallization was dominant and an activation energy of crystal growth of E a,s=327±50 kJ mol−1 was calculated. In the size range 0.15 to 0.45 mm, both surface and volume crystallization occurred. For particle sizes >0.45 mm, volume crystallization dominated with spherulitic morphology of the crystals growth and E a,v=359±64 kJ mol−1 was calculated.  相似文献   

19.
Poly(ε-caprolactone)-block-poly(propylene adipate) (PCL-block-PPAd) copolymers were prepared using a combination of polycondensation and ring opening polymerization of ε-CL. 1H-NMR and 13C-NMR spectroscopy showed that the prepared copolymers were block. Also, the copolymer composition was calculated from NMR spectra and was found similar to the feeding ratio. The copolymers formed PCL crystals as was proved by WAXD. The crystallization rates and degree of crystallinity, measured from DSC crystallization experiments, decreased with PPAd content. The equilibrium melting points of PCL were estimated applying the Hoffmann–Weeks method and the observed melting point depression was analyzed using the Nishi–Wang equation which showed that there is some miscibility of the copolymer segments. Isothermal crystallization experiments after self-nucleation were performed to distinguish the nucleation and crystal growth stages during isothermal crystallization. The secondary nucleation theory was then used and the obtained data for crystallization rates, estimated from the inverse of the crystallization half-times, were analyzed. The resulting values for nucleation constant K g, and also for the surface free energies and work of chain folding, increased with PPAd content due to topological restrictions.  相似文献   

20.
In the present work, 3-methacryloxypropyltrimethoxy-silane silanized silica(SiO_2-WD70) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide immobilized silica(SiO_2-WD70-DOPO) nanoparticles were prepared. Silica, SiO_2-WD70 and SiO_2-WD70-DOPO were incorporated into polypropylene(PP) by melt compounding. Differential scanning calorimetry(DSC), X-ray diffraction(XRD) and polarized optical microscopy(POM) were employed to investigate the isothermal crystallization behavior of PP and PP/silica composites. The kinetic constant(kn), and half crystallization time(t1/2) were calculated by Avrami equation,while the surface free energy of folding was calculated by Lauritzen-Hoffman theory. The increased kn, decreased t1/2 and the surface free energy(σe) in the order of PP, PP/SiO_2, PP/SiO_2-WD70 and PP/SiO_2-WD70-DOPO nanocomposites were attributed to the surface modification of silica. XRD indicated that SiO_2-WD70-DOPO addition had no effect on PP crystal structure but accelerated the crystallization rate. POM determined that SiO_2-WD70-DOPO addition promoted the nucleation of PP by inducing a higher nucleation density during isothermal conditions. The surface modified nanoparticle SiO_2-WD70-DOPO might find possible application as a new type of inorganic nano-sized nucleation agent for PP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号