首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclic starches α-, β-, and γ-cyclodextrins (CDs) readily form inclusion complexes (ICs) with a large variety of polymers. In polymer-CD-ICs, the CD hosts are threaded by the guest polymers, which must be highly extended, and stacks of polymer threaded host CDs pack closely together and crystallize. When guest polymers are coalesced from their CD-IC crystals, by washing with a solvent good, bad for CD, polymer, or treatment with an amylase enzyme, the guest polymers coalesce into bulk samples whose structures, morphologies, and even conformations are distinct from bulk samples made from their solutions and melts. We generally observe (i) crystallizable homopolymers coalesced from their CD-ICs to evidence increased levels of crystallinity, unusual polymorphs, and higher melting, crystallization, and decomposition temperatures, while coalesced amorphous homopolymers exhibit higher glass-transition temperatures, than samples consolidated from their disordered solutions and melts; (ii) molecularly mixed, intimate blends of two or more polymers that are normally believed to be immiscible can be achieved by coalescence from their common CD-IC crystals, (iii) the phase segregation of incompatible blocks can be controlled (suppressed or increased) when block copolymers are coalesced from their CD-IC crystals, and (iv) the thermal and temporal stabilities of the coalesced and well-mixed homopolymer blends and block copolymers appear to be substantial, thereby suggesting retention of as-coalesced structures and morphologies under normal thermal processing conditions. Furthermore, CDs may be covalently incorporated in polymers both during and after their syntheses, thereby providing a broad range of new functionalities for delivery of additives or to act as sensors or filters. Alternatively, additive-CD-ICs or additives rotaxanated with CDs may be effectively delivered to polymers. As an example, TiO2—filled polypropylene fibers may be readily dyed in aqueous solution using water soluble CD-rotaxanated azo-dyes.  相似文献   

2.
Cyclodextrins (CDs) are cyclic starches containing α‐1,4‐linked glucose units. Commonly available α‐, β‐, and γ‐CDs have six, seven, and eight glucose units, respectively. They are well known for forming noncovalent inclusion complexes (ICs) with a variety of guest molecules, including many polymers, by threading and inclusion into their relatively hydrophobic interior cavities, which are roughly cylindrical, with diameters of ~0.5–1.0 nm. Warm water washing of crystalline CD‐ICs containing polymer guests insoluble in water or treatment with amylase enzymes serve to remove the host CDs and result in the coalescence of the guest polymers into solid bulk samples. When guest polymers are coalesced from their CD‐ICs by carefully removing the host CD lattices, they are observed to solidify with structures, morphologies, and even conformations that are distinct from bulk samples made from their solutions and melts. In addition, molecularly mixed, intimate blends can be obtained upon coalescence of two or more normally immiscible polymer guests from their common CD‐ICs. Not only are the organizations and behaviors of bulk polymer samples significantly modified on coalescence from their CD‐ICs, but both are also maintained for significant periods of time even when heated above their Tgs and Tms, where their chains are mobile. Here, we discuss the long‐time, high temperature stabilities of the organizations and properties of bulk polymers coalesced from their crystalline CD‐ICs. While random‐coiling of their initially coalesced, largely extended, separated, and unentangled chains may be relatively rapid, we conclude that the subsequent slow establishment of homogeneous melts or phase‐segregated blends results from the extremely sluggish center‐of‐mass diffusion that must accompany full entanglement of their chains. Apparently, the process of entangling the largely separated and not fully interpenetrating randomly coiled chains initially coalesced from their CD‐ICs is particularly slow, much slower in fact than the center‐of mass diffusion of polymer chains in their fully entangled melts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1543–1553, 2009  相似文献   

3.
Much has been learned from inclusion compounds (IC’s) formed between guest polymers and host cyclodextrins (CDs) [polymer-CD-ICs] by examining the properties of the fully covered guest polymers, as well as those coalesced neat bulk samples of guest polymers obtained upon removal of the host CDs. However, what can be gained from studying the properties of the restrained unthreaded portions of polymer chains that “dangle” from non-stoichiometric (n-s)-polymer-CD-IC’s? We attempt to assist in answering this question by observing (n-s)-polymer-CD-IC’s formed between amorphous atactic-poly(methyl methacrylate) (PMMA) and γ-CD, as well as the IC formed between a synthesized poly(ε-caprolactone)-poly(propylene glycol)-poly(ε-caprolactone) (PCL-PPG-PCL) triblock copolymer and β-CD, which was presumed to have threaded and unthreaded PPG and PCL blocks. Though our (n-s)-PMMA-γ-CD-IC samples were found to exhibit extremely heterogeneous behaviors, glass transition temperature increases of up to 27?°C above that of neat PMMA were observed. X-ray diffraction data indicates modest γ-CD crystallinity at partial coverages of PMMA, with a crystal structure similar to that of the IC with full coverage. On the other hand, XRD, DSC and FTIR data revealed an almost total disruption of PCL block crystallinity upon complexation of PCL-PPG-PCL with β-CD, suggesting either partial threading and coverage of the PCL blocks by β-CD or their partial mixing with the PPG blocks covered with β-CD.  相似文献   

4.
We and several other research groups have recently reported the ability of cyclodextrins (CDs) to act as hosts in the formation of inclusion compounds (ICs) with guest polymers. Polymer-CD-ICs are crystalline materials formed by the close packing of host CD stacks, which results in a continuous channel of ∼5-10Å in diameter running down the interior of the CD stacks. The guest polymers are confined to the narrow, continuous CD channels, and so are necessarily highly extended and segregated from neighboring polymer chains by the walls of the CD stacks. We have shown that coalescence of guest polymers from their CD-IC crystals can result in a significant reorganization of the structures, morphologies, and even conformations that are normally observed in their bulk samples. For example, when poly(ethylene terephthalate) (PET) is coalesced from its γ-CD-IC, we find that in the non-crystalline regions of the sample the PET chains are adopting highly extended kink conformations, which result in their facile recrystallization from the melt and prevent quenching of the coalesced PET to achieve an amorphous sample during rapid cooling from above Tm. We have also created well-mixed blends of normally incompatible polymers by coalescing them from CD-ICs containing both polymers, where they are necessarily spatially proximal. Finally we have found the unique morphologies created by the coalescence of homopolymers, block copolymers, and homopolymer pairs from their CD-ICs are generally stable to heat treatment for substantial periods above their Tm's and/or Tg's, and so may be thermoplastically processed without loss of the unique morphologies achieved through coalescence from their CD-IC crystals.  相似文献   

5.
When polymers are guests in crystalline inclusion compounds (ICs) formed with small-molecule hosts, they occupy a unique environment. In a cocrystallization process the small-molecule host forms a crystalline lattice containing long narrow channels where the guest polymer chains are included. Because of the narrow channel diameter and because neighboring channels are separated by walls formed exclusively from the small-molecule host lattice, the included polymer chains are highly extended and separated from polymer chains in other IC channels. As a consequence, polymer-IC crystals provide a unique solid state environment for the included polymer chains and serve as models useful for assessing the contributions made by the inherent behavior of individual polymer chains to the properties of ordered, bulk polymers, which can be obscured by pervasive interactions between their tightly packed polymer chains. In this paper we describe the conformations and motions of polymer chains confined to the narrow channels of the following polymer-ICs: i. polyethylene and trans-1, 4-polybutadiene in their ICs with perhydrotriphenylene, ii. polyepsilon caprolactone and its diblock and triblock copolymers with polybutadiene and poly (ethylene oxide) in their ICs with urea, and iii. nylon-6 in its ICs with alpha-, beta-, and gamma-cyclodextrins. High resolution, solid state NMR serves as both the conformational (C-13 chemical shifts) and motional (relaxation times and line shapes) probe. Comparison with identical NMR measurements performed on the bulk homo- and copolymer samples permits us to draw several conclusions regarding the relationships between the conformations and motions of polymers and their dependence on their ordered solid state environments.  相似文献   

6.
We describe the successful mixing of polymer pairs and triplets that are normally incompatible to form blends that possess molecular‐level homogeneity. This is achieved by the simultaneous formation of crystalline inclusion compounds (ICs) between host cyclodextrins (CDs) and two or more guest polymers, followed by coalescing the included guest polymers from their common CD–ICs to form blends. Several such CD–IC fabricated blends, including both polymer1/polymer2 binary and polymer1/ polymer2/polymer3 ternary blends, are described and examined by means of X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier transform infrared spectroscopy, and solid‐state NMR to probe their levels of mixing. It is generally observed that homogeneous blends with a molecular‐level mixing of blend components is achieved, even when the blend components are normally immiscible by the usual solution and melt blending techniques. In addition, when block copolymers composed of inherently immiscible blocks are coalesced from their CD–ICs, significant suppression of their normal phase‐segregated morphologies generally occurs. Preliminary observations of the thermal and temporal stabilities of the CD–IC coalesced blends and block copolymers are reported, and CD–IC fabrication of polymer blends and reorganization of block copolymers are suggested as a potentially novel means to achieve a significant expansion of the range of useful polymer materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4207–4224, 2004  相似文献   

7.
郭明雨  江明 《化学进展》2007,19(4):557-566
本文综述了基于环糊精包结络合作用的大分子自组装的研究进展,包括:(1) 线型、梳型、多臂星型或超支化聚合物与环糊精或其二聚体自组装形成多聚轮烷(分子项链)、多聚准轮烷、双多聚(准)轮烷、分子管、双分子管、超分子凝胶及其应用;(2)桥联环糊精与桥联客体分子自组装制备线型或超支化超分子聚合物;(3)温度、pH值、光及客体分子刺激响应智能体系; (4) 通过亲水性的环糊精线型均聚物与含金刚烷的疏水性聚合物之间的包结络合作用来制备高分子胶束及其空心球等。  相似文献   

8.
Herein macromolecular recognition by cyclodextrins (CDs) is summarized. Recognition of macromolecules by CDs is classified as main‐chain recognition or side‐chain recognition. We found that CDs form inclusion complexes with various polymers with high selectivity. Polyrotaxanes in which many CDs are entrapped in a polymer chain were prepared. Tubular polymers were prepared from the polyrotaxanes. CDs were found to recognize side‐chains of polymers selectively. CD host polymers were found to form gels with guest polymers in water. These gels showed self‐healing properties. When azobenzene was used as a guest, the gel showed sol‐gel transition by photoirradiation. When ferrocene was used, redox‐responsive gels were obtained. Macroscopic self‐assembly through molecular recognition has been discovered. Photoswitchable gel association and dissociation have been observed.  相似文献   

9.
A series of conjugated polyrotaxane insulated molecular wires are synthesised by aqueous Suzuki polymerisation, using hydrophobic binding to promote threading of the cyclodextrin units. These polyrotaxanes have conjugated polymer cores based on poly(para-phenylene), polyfluorene, and poly(diphenylene-vinylene), threaded through 0.9-1.6 cyclodextrins per repeat unit. Bulky naphthalene-3,6-disulfonate endgroups prevent the macrocycles from slipping off the conjugated polymer chains. Dialysis experiments show that the cyclodextrins become unthreaded only if smaller stoppers are used. MALDI TOF mass spectra detect oligomers with up to ten threaded cyclodextrins, and reveal the presence of some defects that result for oxidative homo-coupling of boronic acids. Weight-average molecular weights were determined by analytical ultracentrifugation, demonstrating that step-growth polymerisation is efficient enough to achieve degrees of polymerisation up to approximately 20 repeat units (84 para-phenylenes). The fluorescence spectra of these polyrotaxanes indicate that the presence of the threaded cyclodextrin macrocycles reduces the flexibility of the conjugated polymer pi-systems. Both the solution and the solid-state photoluminescence quantum yields are enhanced upon threading of the conjugated polyaromatic cores through alpha- or beta-cyclodextrins, and the emission spectra of the polyrotaxanes are blue-shifted compared to the corresponding unthreaded polymers. The greater weight of the 0-0 transition in the emission spectra, as well as the smaller Stokes shift, indicate that the polyrotaxanes are more rigid than the unthreaded polymers.  相似文献   

10.
A polyrotaxane in which β‐cyclodextrins (β‐CDs) are threaded onto a polyether chain was prepared by polycondensation of a β‐CD/bisphenol A (BPA) inclusion complex with aromatic dihalides. Two dihalides, with and without a side chain, were used. This polycondensation results in a polyrotaxane (or pseudopolyrotaxane for polymers without stoppers) with a 1:1 threading ratio when the side chain is present and 2:3 when there is none. The long side chain prevents dethreading of the macrocycles. The best yield and a good threading ratio were obtained when the polycondensation was performed by liquid?solid phase transfer catalysis without solvent (L/S PTC) using 2,5‐bi(iodomethyl)‐4‐methoxy‐(1‐octyloxy)benzene as dihalide. The 1H NMR and FTIR spectra show that the products consist of β‐CD and polyether. The 2D NOESY NMR spectrum shows that the polyether chains are included in the β‐CD cavity. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4391–4399, 2009  相似文献   

11.
A series of hydrophilic per‐6‐thio‐6‐deoxy‐γ‐cyclodextrins (CDs) were synthesized from per‐6‐iodo‐6‐deoxy‐γ‐CD. These new hosts are able to solubilize polycyclic aromatic guests in aqueous solution to much higher extents than native CDs. Phase‐solubility diagrams were mostly linear in accordance with both 1:1 and 1:2 CD–guest complexes in aqueous solution. The stoichiometry of the inclusion complexes was further investigated by fluorescence spectroscopy, which revealed very pronounced Stokes shifts typical for 1:2 complexes. This finding was further consolidated by quantum mechanical calculations of dimer formation of the guests and space‐filling considerations by using the cross‐sectional areas of the CDs and guests. The calculated dimerization energies correlated well with the binding free energies measured for the 1:2 complexes, and provided the main contribution to the driving force of complexation in the γ‐CD cavity.  相似文献   

12.
环糊精分子管道是一种基于环糊精制备的中空管状聚合物,因其特殊的空腔结构及与客体分子间的选择性组装现象而引起广泛关注。本文综述和比较了环糊精分子管道的主要制备方法,着重阐述了环糊精分子管道与客体分子间的选择性组装现象、机理及影响因素方面的研究成果。对环糊精分子管道的应用现状和潜在的应用价值进行了概括,最后提出了应予以重视...  相似文献   

13.
Cyclodextrins (CDs) are cyclic polysaccharides with nano‐size, largely hydrophobic cavities, and exteriors covered with hydrophilic hydroxyl groups, making them water soluble. Threading and filling their cavities with polymer chains produces noncovalently bonded crystalline inclusion compounds (ICs). In this study, we formed fully covered, stoichiometric ICs between guest poly(L ‐lactic acid), poly(ε‐caprolactone), and nylon‐6 chains and host α‐CD. Coalesced samples of all three polymers were obtained after appropriately removing the stacked α‐CD host channels from their ICs. Distinct differential scanning calorimetriy (DSC) thermograms were observed for as‐received and coalesced samples, with the coalesced samples crystallizing faster at higher temperatures from their melts, and this distinction was maintained even after extensive, long‐time melt‐annealing (hours, days, and weeks). We believe this is due to the largely unentangled chains with extended conformations that are more densely packed in the initially coalesced samples. When small amounts (~2 wt %) of the coalesced polymers are used as self‐nucleating agents for their as‐received samples, the resulting self‐nucleated samples show DSC thermograms similar to those of the neat coalesced polymers, including their long‐time stability to melt‐annealing. Coalesced polymers, whether neat or in samples they self‐nucleate, may conserve their organization in the melt (largely extended and unentangled chains) for long periods, because the process of entangling the many chains influenced by a single initially extended unentangled coalesced chain, after it randomly coils, is extremely sluggish. By contrast, in melt‐crystallized or solution‐cast samples, polymer chains generally become fully randomly coiled, interpenetrate, and entangle after being heated and held in their melts for comparatively much shorter times. For example, we have recently observed (DSC) that ultra high molecular weight, gel‐spun spectra polyethylene (PE) fibers® did not conserve or retain any memory of their as‐spun and highly drawn semicrystalline morphology even after spending as little as 2 min in the melt. As a consequence of the comparison to the behavior of coalesced polymer melts, we believe that polyethylene chains in Spectra fibers® must be at least intimately dispersed within their crystalline regions, and likely partially coiled and entangled in their noncrystalline regions, thereby facilitating their rapid transformation into a full entanglement network of randomly coiling chains in the melt. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
Hydrogel biomaterials are pervasive in biomedical use. Applications of these soft materials range from contact lenses to drug depots to scaffolds for transplanted cells. A subset of hydrogels is prepared from physical cross‐linking mediated by host–guest interactions. Host macrocycles, the most recognizable supramolecular motif, facilitate complex formation with an array of guests by inclusion in their portal. Commonly, an appended macrocycle forms a complex with appended guests on another polymer chain. The formation of poly(pseudo)rotaxanes is also demonstrated, wherein macrocycles are threaded by a polymer chain to give rise to physical cross‐linking by secondary non‐covalent interactions or polymer jamming. Host–guest supramolecular hydrogels lend themselves to a variety of applications resulting from their dynamic properties that arise from non‐covalent supramolecular interactions, as well as engineered responsiveness to external stimuli. These are thus an exciting new class of materials.  相似文献   

15.
Poly-pseudo-rotaxanes CDs contains as a subset 1 (CDs; cyclodextrins, 1; poly(delta-valerolactone) having single beta-CD at the end of the polymer chain) initiate polymerization of delta-valerolactone (delta-VL) in the solid state when CDs (alpha-CD, beta-CD, and 2,6-di-O-methyl-beta-CD) are threaded onto the polymer chain. 1 without threaded CDs did not show any polymerization ability for delta-VL. An adamantane molecule (Ad) inhibited the polymerization ability of CDs contains as a subset 1 for delta-VL, indicating that beta-CD at the end of CDs contains as a subset 1 could not bind delta-VL because the beta-CD cavity was occupied by Ad. It should be noted that the insertion reaction and the polymerization took place inside the beta-CD cavity at the end of CDs contains as a subset 1 and that the formation of poly-pseudo-rotaxane is necessary for the initiation of delta-VL. The structures of beta-CD contains as a subset 1 and 1 were characterized by powder X-ray diffraction measurements and solid-state NMR spectroscopies. The polymer chain of beta-CD contains as a subset 1 was found to elongate in the solid state, whereas the polymer chain of 1 formed a random coil conformation. 1 was deactivated for the polymerization by blocking the active cavity of beta-CD with the polymer chain. CDs threaded onto 1 are immune to the initiation of delta-VL directly but have an essential role to fold the polymer chain in a proper way as an artificial chaperone.  相似文献   

16.
The narrow channels occupied by polymer chains in their crystalline inclusion compounds(IC) with small-molecule, host clathrates, such as urea and perhydrotriphenylene(PHTP), provide a unique, solid state environment. Single polymer chains are confined to occupy narrow cylindrical channels whose walls consist of a crystalline matrix of the small-molecule, host clathrate. Because the IC channels are well-separated, each included polymer chain is isolated from its neighbors, and is therefore free from cooperative, interpolymer interactions which often dominate and complicate the behavior of bulk polymers. We have modeled polymer chains included in their IC channels by restricting the conformations accessible to small chain fragments(9–20 backbone bonds) to those which fit into a cylinder whose diameter(5.5Å) mimics the observed channel cross-section. After establishing the population of channel conformers, a test is performed to determine the possibility of interconverting between them without any portion of the polymer chain fragment leaving the channel during any step in the interconversion process. The results of our modeling are compared to observations made on a variety of polymer-IC's formed with either or both of the host clathrates, urea and PHTP. General agreement is found between the modeled conformations and mobilities of cylindrical polymer chain fragments and those observed directly from the crystalline polymer-IC's, principally by solid state NMR, DSC, and X-ray diffraction.  相似文献   

17.
The construction of macromolecular hosts that are able to thread chiral guests in a stereoselective fashion is a big challenge. We herein describe the asymmetric synthesis of two enantiomeric C2-symmetric porphyrin macrocyclic hosts that thread and bind different viologen guests. Time-resolved fluorescence studies show that these hosts display a factor 3 kinetic preference (ΔΔGon = 3 kJ mol−1) for threading onto the different enantiomers of a viologen guest appended with bulky chiral 1-phenylethoxy termini. A smaller kinetic selectivity (ΔΔGon = 1 kJ mol−1) is observed for viologens equipped with small chiral sec-butoxy termini. Kinetic selectivity is absent when the C2-symmetric hosts are threaded onto chiral viologens appended with chiral tails in which the chiral moieties are located in the centers of the chains, rather than at the chain termini. The reason is that the termini of the latter guests, which engage in the initial stages of the threading process (entron effect), cannot discriminate because they are achiral, in contrast to the chiral termini of the former guests. Finally, our experiments show that the threading and de-threading rates are balanced in such a way that the observed binding constants are highly similar for all the investigated host–guest complexes, i.e. there is no thermodynamic selectivity.

Chiral guests display kinetic stereoselective threading through chiral porphyrin cages if their chirality is located at the chain ends and not in the centers, supporting the previously reported entron effect of threading.  相似文献   

18.
The preparation and characterization of the crystalline inclusion complexes between a polymeric guest, poly(1,3-dioxolane) (PDXL), and small-molecular hosts, cyclodextrins (CDs) are reported. It is observed that the polymer guest can form crystalline inclusion complexes with three kinds of cyclodextrins, which may be attributed to the high oxygen atom density in PDXL chain. The crystalline inclusion complexes were characterized with FTIR , TGA, X-ray diffraction, SEM, 1H NMR and 13C CP/MAS NMR spectroscopes. It was found that the crystalline inclusion complexes have higher temperature stability than the pure CDs. The X-ray powder diffraction patterns of the crystalline inclusion complexes proved that they have columnar structures. 13C CP/MAS NMR spectra of the crystalline inclusion complexes indicate that CDs adopt a more symmetrical conformation in the complexes, while pure CDs assume a less symmetrical conformation in the crystal without a guest inside their cavities. The morphology of the crystal was  相似文献   

19.
The first example of core cross‐linked star (CCS) polyrotaxane was prepared using the poly(ϵ‐caprolactone) (PCL) CCS three‐dimensional (3D) scaffold. The 3D CCS polymer was firstly prepared through the “arm‐first” approach. Then, the “arms” of the resultant PCL CCS polymer were threaded with α‐cyclodextrins (α‐CDs). The threaded α‐CDs were permanently locked by the “click” reaction of terminal alkyne functionalities of the star polymers with the azide‐functionalized end caps to afford the CCS polyrotaxanes. All analytical results confirm the formation of the CCS polyrotaxanes and reveal their characteristics, including fluorescence under UV, a channel‐type crystalline structure, a two‐step thermal decomposition, and a unique core‐shell structure in great contrast to the polymer precursors.  相似文献   

20.
通过结构计算分析了大体积的六亚甲基亚硝胺(NHMI)和N’-亚硝基去甲烟碱(NNN)在小微孔沸石上各种可能的吸附方式,结合实验事实推断出它们以-N-N=O官能团嵌入沸石孔道进行吸附的几率最大.这种“嵌入式”吸附方式是小微孔沸石得以吸附、分离那些体积远远大于其孔径的毒物分子的重要原因,可用以拓宽沸石在生态环境保护中的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号