首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study smoothness spaces of Morrey type on Rn and characterise in detail those situations when such spaces of type A_(p,q)~(s,r)(R~n) or A_(u,p,q)~s(R~n) are not embedded into L_(∞)(R~n).We can show that in the so-called sub-critical,proper Morrey case their growth envelope function is always infinite which is a much stronger assertion.The same applies for the Morrey spaces M_(u,p)(R~m) with p u.This is the first result in this direction and essentially contributes to a better understanding of the structure of the above spaces.  相似文献   

2.
The aim of this paper is to investigate the relations between Seifert manifolds and (1, 1)-knots. In particular, we prove that each orientable Seifert manifold with invariants
$\{ Oo,0| - 1;\underbrace {(p,q),...,(p,q)}_{n times},(l,l - 1)\} $
has the fundamental group cyclically presented by G n ((x 1 q ...x n q l x n ?p ) and, moreover, it is the n-fold strongly-cyclic covering of the lens space L(|nlq ? p|, q) which is branched over the (1, 1)-knot K(q, q(nl ? 2), p ? 2q, p ? q) if p ≥ 2q and over the (1, 1)-knot K(p? q, 2q ? p, q(nl ? 2), p ? q) if p< 2q.
  相似文献   

3.
The paper discusses the asymptotic depth of a reversible circuits consisting of NOT, CNOT and 2-CNOT gates. The reversible circuit depth function D(n, q) is introduced for a circuit implementing a mapping f: Z2n → Z2n as a function of n and the number q of additional inputs. It is proved that for the case of implementation of a permutation from A(Z2n) with a reversible circuit having no additional inputs the depth is bounded as D(n, 0) ? 2n/(3log2n). It is also proved that for the case of transformation f: Z2n → Z2n with a reversible circuit having q0 ~ 2n additional inputs the depth is bounded as D(n,q0) ? 3n.  相似文献   

4.
Let L be a non-negative self-adjoint operator acting on L2(R n ) satisfying a pointwise Gaussian estimate for its heat kernel. Let w be an A r weight on R n × R n , 1 < r < ∞. In this article we obtain a weighted atomic decomposition for the weighted Hardy space H L,w p (R n ×R n ), 0 < p ≤ 1 associated to L. Based on the atomic decomposition, we show the dual relationship between H L,w 1 (R n × R n ) and BMOL,w(R n × R n ).  相似文献   

5.
Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H~(p,q)_A(R~n) associated with A via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characterizations except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on Rn.As applications, we first prove that Hp,q A(Rn) is an intermediate space between H~(p1,q1)_A(Rn) and H~(p2,q2)_A(R~n) with 0 p1 p p2 ∞ and q1, q, q2 ∈(0, ∞], and also between H~(p,q1)_A(Rn) and H~(p,q2)_A(R~n) with p ∈(0, ∞)and 0 q1 q q2 ∞ in the real method of interpolation. We then establish a criterion on the boundedness of sublinear operators from H~(p,q)_A(R~n) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type Calder′on-Zygmund operators from H~(p,∞)_A(R~n) to the weak Lebesgue space L~(p,∞)(R~n)(or to H~p_A(R~n)) in the ln λcritical case, from H~(p,q)_A(R~n) to L~(p,q)(R~n)(or to H~(p,q)_A(R~n)) with δ∈(0,(lnλ)/(ln b)], p ∈(1/(1+,δ),1] and q ∈(0, ∞], as well as the boundedness of some Calderon-Zygmund operators from H~(p,q)_A(R~n) to L~(p,∞)(R~n), where b := | det A|,λ_:= min{|λ| : λ∈σ(A)} and σ(A) denotes the set of all eigenvalues of A.  相似文献   

6.
In this paper, we first introduce \({L^{{\sigma _1}}}{\left( {\log L} \right)^{{\sigma _2}}}\) conditions satisfied by the variable kernels Ω(x, z) for 0 ≤ σ 1 ≤ 1 and σ 2 ≥ 0. Under these new smoothness conditions, we will prove the boundedness properties of singular integral operators T Ω, fractional integrals T Ω,α and parametric Marcinkiewicz integrals μ Ω ρ with variable kernels on the Hardy spaces H p (R n ) and weak Hardy spaces WH p (R n ). Moreover, by using the interpolation arguments, we can get some corresponding results for the above integral operators with variable kernels on Hardy–Lorentz spaces H p,q(R n ) for all p < q < ∞.  相似文献   

7.
The classical semiparametric Bernstein–von Mises (BvM) results is reconsidered in a non-classical setup allowing finite samples and model misspecication. We obtain an upper bound on the error of Gaussian approximation of the posterior distribution for the target parameter which is explicit in the dimension of the target parameter and in the dimension of sieve approximation of the nuisance parameter. This helps to identify the so called critical dimension pn of the sieve approximation of the full parameter for which the BvM result is applicable. If the bias induced by sieve approximation is small and dimension of sieve approximation is smaller then critical dimension than the BvM result is valid. In the important i.i.d. and regression cases, we show that the condition “pn2q/n is small”, where q is the dimension of the target parameter and n is the sample size, leads to the BvM result under general assumptions on the model.  相似文献   

8.
We consider a new class of functions on the p-adic linear space ? p n for which a Fourier transform can be defined.We prove equalities of Parseval type, an inversion formula and a sufficient condition for a function to be represented as this Fourier transform. Also we give a sharp estimate of the L2(? p n ) modulus of continuity in terms of Fourier transform generalizing the result of S. S. Platonov in the case n = 1. Finally we prove a generalization of this result and its converse for Lq(? p n ) with appropriate q.  相似文献   

9.
We continue our investigations on pointwise multipliers for Besov spaces of dominating mixed smoothness. This time we study the algebra property of the classes S_(p,q)~rB(R~d) with respect to pointwise multiplication. In addition, if p≤q, we are able to describe the space of all pointwise multipliers for S_(p,q)~rB(R~d).  相似文献   

10.
Let R be a subring ring of Q. We reserve the symbol p for the least prime which is not a unit in R; if R ?Q, then p=∞. Denote by DGL n np , n≥1, the category of (n-1)-connected np-dimensional differential graded free Lie algebras over R. In [1] D. Anick has shown that there is a reasonable concept of homotopy in the category DGL n np . In this work we intend to answer the following two questions: Given an object (L(V), ?) in DGL n 3n+2 and denote by S(L(V), ?) the class of objects homotopy equivalent to (L(V), ?). How we can characterize a free dgl to belong to S(L(V), ?)? Fix an object (L(V), ?) in DGL n 3n+2 . How many homotopy equivalence classes of objects (L(W), δ) in DGL n 3n+2 such that H * (W, d′)?H * (V, d) are there? Note that DGL n 3n+2 is a subcategory of DGL n np when p>3. Our tool to address this problem is the exact sequence of Whitehead associated with a free dgl.  相似文献   

11.
Let {p n (t)} n=0 t8 be a system of algebraic polynomials orthonormal on the segment [?1, 1] with a weight p(t); let {x n,ν (p) } ν=1 n be zeros of a polynomial p n (t) (x x,ν (p) = cosθ n,ν (p) ; 0 < θ n,1 (p) < θ n,2 (p) < ... < θ n,n (p) < π). It is known that, for a wide class of weights p(t) containing the Jacobi weight, the quantities θ n,1 (p) and 1 ? x n,1 (p) coincide in order with n ?1 and n ?2, respectively. In the present paper, we prove that, if the weight p(t) has the form p(t) = 4(1 ? t 2)?1{ln2[(1 + t)/(1 ? t)] + π 2}?1, then the following asymptotic formulas are valid as n → ∞:
$$\theta _{n,1}^{(p)} = \frac{{\sqrt 2 }}{{n\sqrt {\ln (n + 1)} }}\left[ {1 + {\rm O}\left( {\frac{1}{{\ln (n + 1)}}} \right)} \right],x_{n,1}^{(p)} = 1 - \left( {\frac{1}{{n^2 \ln (n + 1)}}} \right) + O\left( {\frac{1}{{n^2 \ln ^2 (n + 1)}}} \right).$$
  相似文献   

12.
13.
Let R+:= [0, +∞), and let the matrix functions P, Q, and R of order n, n ∈ N, defined on the semiaxis R+ be such that P(x) is a nondegenerate matrix, P(x) and Q(x) are Hermitian matrices for x ∈ R+ and the elements of the matrix functions P?1, Q, and R are measurable on R+ and summable on each of its closed finite subintervals. We study the operators generated in the space Ln2(R+) by formal expressions of the form l[f] = ?(P(f' ? Rf))' ? R*P(f' ? Rf) + Qf and, as a particular case, operators generated by expressions of the form l[f] = ?(P0f')' + i((Q0f)' + Q0f') + P'1f, where everywhere the derivatives are understood in the sense of distributions and P0, Q0, and P1 are Hermitianmatrix functions of order n with Lebesgue measurable elements such that P0?1 exists and ∥P0∥, ∥P0?1∥, ∥P0?1∥∥P12, ∥P0?1∥∥Q02Lloc1(R+). Themain goal in this paper is to study of the deficiency index of the minimal operator L0 generated by expression l[f] in Ln2(R+) in terms of the matrix functions P, Q, and R (P0, Q0, and P1). The obtained results are applied to differential operators generated by expressions of the form \(l[f] = - f'' + \sum\limits_{k = 1}^{ + \infty } {{H_k}} \delta \left( {x - {x_k}} \right)f\), where xk, k = 1, 2,..., is an increasing sequence of positive numbers, with limk→+∞xk = +∞, Hk is a number Hermitian matrix of order n, and δ(x) is the Dirac δ-function.  相似文献   

14.
It is shown that if P m α,β (x) (α, β > ?1, m = 0, 1, 2, …) are the classical Jaboci polynomials, then the system of polynomials of two variables {Ψ mn α,β (x, y)} m,n=0 r = {P m α,β (x)P n α,β (y)} m, n=0 r (r = m + nN ? 1) is an orthogonal system on the set Ω N×N = ?ub;(x i , y i ) i,j=0 N , where x i and y i are the zeros of the Jacobi polynomial P n α,β (x). Given an arbitrary continuous function f(x, y) on the square [?1, 1]2, we construct the discrete partial Fourier-Jacobi sums of the rectangular type S m, n, N α,β (f; x, y) by the orthogonal system introduced above. We prove that the order of the Lebesgue constants ∥S m, n, N α,β ∥ of the discrete sums S m, n, N α,β (f; x, y) for ?1/2 < α, β < 1/2, m + nN ? 1 is O((mn) q + 1/2), where q = max?ub;α,β?ub;. As a consequence of this result, several approximate properties of the discrete sums S m, n, N α,β (f; x, y) are considered.  相似文献   

15.
Haas–Molnar maps are a family of maps of the unit interval introduced by A. Haas and D. Molnar. They include the regular continued fraction map and A. Renyi’s backward continued fraction map as important special cases. As shown by Haas and Molnar, it is possible to extend the theory of metric diophantine approximation, already well developed for the Gauss continued fraction map, to the class of Haas–Molnar maps. In particular, for a real number x, if (p n /q n )n≥1 denotes its sequence of regular continued fraction convergents, set θ n (x) = q n 2 |x ? p n /q n |, n = 1, 2.... The metric behaviour of the Cesàro averages of the sequence (θ n (x))n≥1 has been studied by a number of authors. Haas and Molnar have extended this study to the analogues of the sequence (θ n (x))n≥1 for the Haas–Molnar family of continued fraction expansions. In this paper we extend the study of \(({\theta _{{k_n}}}(x))\)n≥1 for certain sequences (k n )n≥1, initiated by the second named author, to Haas–Molnar maps.  相似文献   

16.
We study metabelian Alperin groups, i.e., metabelian groups in which every 2-generated subgroup has a cyclic commutator subgroup. It is known that, if the minimum number d(G) of generators of a finite Alperin p-group G is n ≥ 3, then d(G′) ≤ C n 2 for p≠ 3 and d(G′) ≤ C n 2 + C n 3 for p = 3. The first section of the paper deals with finite Alperin p-groups G with p≠ 3 and d(G) = n ≥ 3 that have a homocyclic commutator subgroup of rank C n 2 . In addition, a corollary is deduced for infinite Alperin p-groups. In the second section, we prove that, if G is a finite Alperin 3-group with homocyclic commutator subgroup G- of rank C n 2 + C n 3 , then G″ is an elementary abelian group.  相似文献   

17.
The renormalized coupling constants g 2k that enter the equation of state and determine nonlinear susceptibilities of the system have universal values g 2k * at the Curie point. We use the pseudo-ε-expansion approach to calculate them together with the ratios R 2k = g 2k /g 4 k-1 for the three-dimensional scalar λ ? 4 field theory. We derive pseudo-ε-expansions for g 6 * , g 8 * , R 6 * , and R 8 * in the five-loop approximation and present numerical estimates for R 6 * and R 8 * . The higher-order coefficients of the pseudo-ε-expansions for g 6 * and R 6 * are so small that simple Padé approximants turn out to suffice for very good numerical results. Using them gives R 6 * = 1.650, while the recent lattice calculation gave R 6 * = 1.649(2). The pseudo-ε-expansions of g 8 * and R 8 * are less favorable from the numerical standpoint. Nevertheless, Padé–Borel summation of the series for R 8 * gives the estimate R 8 * = 0.890, differing only slightly from the values R 8 * = 0.871 and R 8 * = 0.857 extracted from the results of lattice and field theory calculations.  相似文献   

18.
19.
Order-sharp estimates are established for the best N-term approximations of functions from Nikol’skii–Besov type classes Bpqsm(Tk) with respect to the multiple trigonometric system T(k) in the metric of Lr(Tk) for a number of relations between the parameters s, p, q, r, and m (s = (s1,..., sn) ∈ R+n, 1 ≤ p, q, r ≤ ∞, m = (m1,..., mn) ∈ Nn, k = m1 +... + mn). Constructive methods of nonlinear trigonometric approximation—variants of the so-called greedy algorithms—are used in the proofs of upper estimates.  相似文献   

20.
For the system of root functions of an operator defined by the differential operation ?u″ + p(x)u′ + q(x)u, xG = (0, 1), with complex-valued singular coefficients, sufficient conditions for the Bessel property in the space L2(G) are obtained and a theorem on the unconditional basis property is proved. It is assumed that the functions p(x) and q(x) locally belong to the spaces L2 and W2?1, respectively, and may have singularities at the endpoints of G such that q(x) = qR(x) +qS(x) and the functions qS(x), p(x), q 2 S (x)w(x), p2(x)w(x), and qR(x)w(x) are integrable on the whole interval G, where w(x) = x(1 ? x).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号