首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxygen-ion-conductive apatite-like oxosilicate and silicophosphate ceramics has been prepared by sintering sol-gel synthesis products at temperatures 200°C below those of solid-phase synthesis. The electrical properties of the ceramics obtained have been studied by impedance spectroscopy in the range 400–1000°C. A positive effect of heterovalent substitutions in the silicon sublattice on the bulk and intergrain conductivities is established. The increase in the oxygen-ion conductivity in La9.6Si5.7Mg0.3O26.1 in comparison with the other studied oxosilicates by more than two orders of magnitude is related to the formation of additional interstitial positions for oxygen ions as a result of partial substitution of the silicon ion, tetrahedrally coordinated by oxygen, with the Mg ion having a characteristic octahedral coordinatio  相似文献   

2.
The Na+ content of beta″-alumina can be replaced by a variety of divalent cations in simple ion exchange reactions. The resulting divalent beta″-aluminas are the first family of high conductivity solid electrolytes for divalent cations. Divalent beta″-aluminas which have been prepared so far include conductors of Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Pb2+, Hg2+, and Mn2+. Most have conductivities of about 10-6 (Ω cm)-1 at 40°C and 10-1 (Ω cm)-1 at 300–400°C. However, the conductivity of Pb2+ beta″ alumina is 4.6x10-3 (Ω cm)-1 at 40°C, nearly equal to that of Na+ beta″-alumina. Preliminary structures studies indicate that order-disorder reactions among the divalent cations and vacancies in the conduction region of beta″-alumina critically influence conductivity in the structure.  相似文献   

3.
1300 or 1400 °C pre–sintered Al/Ce/Mg:SrHfO3 and Al/Ce:SrHfO3 ceramics were prepared by the Spark Plasma Sintering (SPS) in order to search for a new scintillation material with a high–effective atomic number(Zeff) and good light output. The SrHfO3 has a high Zeff of 60, and high gamma–ray detection efficiency is expected. Meanwhile it has a high melting point of over 2500 °C, and single crystal is hard to be grown. On the other hand, high melting materials can be prepared as ceramics, and the SPS method is a simple process to fabricate the ceramics within a few hours. Thus, we prepared the samples using the SPS method, and their optical and scintillation properties were investigated. We found that Al/Ce/Mg:SrHfO3 and Al/Ce:SrHfO3 ceramics had an emission wavelength at around 400 nm originating from 5d–4f transition of Ce3+. Moreover, Al/Ce/Mg:SrHfO3 pre-sintered at a temperature of 1400 °C had a light output of approximately 5,000 ph/MeV. In this paper, the light output of Mg-co-doped samples was improved compared with the Mg-free ones. The light output also depends on the pre-sintering temperature.  相似文献   

4.
The deformation-thermal stability of a clusterized amorphous-crystalline structure prepared from a Cu60Fe40 powder mixture at a logarithmic strain e = 4.6 and subjected to isochronous (40 min) annealings at T a = 200–800°C has been investigated. Periodic changes (ΔT = 300°C) in the order and disorder with a maximum ordering at T a = 300 and 600°C and a maximum disordering at T a = 400 and 700°C have been observed. The periodicity of the dominant crystallographic order with a period ΔT = 400°C in the annealing temperature has been revealed for face-centered cubic copper phase planes separated by a singular point at T = 500°C characterized by the dominant body-centered cubic iron phase ordering. It has been shown that the sawtooth shape of the size distribution of strain clusters formed within the crystal structure of deformed samples slowly changes with increasing annealing temperature from exponential (T a = 200–700°C) to linear (T a = 800°C). This indicates a high density of internal local distortions in structural units.  相似文献   

5.
Magnetic iron nanoparticles immersed in a carbon matrix were produced by a combined process of controlled dispersion of Fe3?+? ions in sucrose, thermal decomposition with simultaneous reduction of iron cores and the formation of the porous carbonaceous matrix. The materials were prepared with iron contents of 1, 4 and 8 in %wt in sucrose and heated at 400, 600 and 800°. The samples were analyzed by XRD, Mössbauer spectroscopy, magnetization measurements, TG, SEM and TEM. The materials prepared at 400° are composed essentially of Fe3O4 particles and carbon, while treatments at higher temperatures, e.g. 600 and 800° produced as main phases Fe0 and Fe3C. The Mössbauer spectra of samples heated at 400° showed two sextets characteristic of a magnetite phase and other contributions compatible with Fe3?+? and Fe2?+? phases in a carbonaceous matrix. Samples treated at temperatures above 600° showed the presence of metallic iron with concentrations between 16?C43%. The samples heated at 800° produced higher amounts of Fe3C (between 20% and 58%). SEM showed for the iron 8% sample treated at 600?C800°C particle sizes smaller than 50 nm. Due to the presence of Fe0 particles in the carbonaceous porous matrix the materials have great potential for application as magnetic adsorbents.  相似文献   

6.
The double perovskite Sr2NiMoO6 powders and ceramics were prepared by two different (conventional and precursor) solid-state reaction methods. The phase structure was characterized by XRD and TEM techniques. It has been indicated that single-phase perovskite powders were obtained when calcined in air at 1300°C. However, nano-particles of the size 30–60 nm have been found in powders prepared with the precursor method, while those from the conventional route exhibit large irregular shaped particles with aggregation. The dielectric properties (ε r and tanδ) were also examined in the sintered ceramics. The results showed the transition point at 280°C for conventional route, while no clear phase change was observed in ceramics from the precursor route. These observations clearly indicate that the different starting processes affected the phase formation behavior and the electrical properties of Sr2NiMoO6 ceramics.  相似文献   

7.
《Solid State Ionics》1988,26(3):229-235
Amorphous LiZr2(PO4)3 has been prepared at room temperature starting from aqueous solutions of ZrOCl2, H3PO4, and LiOH and then crystallized by heating at temperatures between 600 and 900°C. The material obtained at 900°C has been characterized by X-ray powder diffractometry, DSC analysis, and ac conductivity. It is monoclinic from 20 up to about 300°C and orthorhombic at higher temperatures. A change in the activation energy for conduction (from 0.79 to 0.43 eV) and a weak endothermic effect (0.9–1.7 cal/g) are associated with the phase transition. The ac conductivity of sintered pellets is, on average, 7×10−4 S cm−1 at 300°C.  相似文献   

8.
Cylindrical rock salt single crystals have been plastically deformed by compression in the [001]-direction at room temperature to shear stresser τ E of 200 N/cm2 and 350 N/cm2, respectively. Isochronal annealing experiments reveal, that workhardening recovers at >300° C. The characteristic annealing temperature was found between 400° C and 450° C. At 600° C the residual workhardening still amounts to 15–20%. The isochronal reduction of screw dislocation density between 400 and 600° C shows qualitatively the same behaviour as recovery of workhardening. From the isothermal annealing curves of the samples deformed to 200 N/cm2 the activation energy for recovery of workhardening was found to be about 1 eV. Assuming that the kinetics of recovery can be explained by processes distributed in activation energy, an approximate spectrum of activation energies (with a maximum arising at ~1 eV) has been evaluated. The results show that recovery of workhardening after low deformation (stage I of the stress strain curve) is mainly due to the dislocations.  相似文献   

9.
Fast oxide-ion conductors La2Mo2-xWxO9 (x = 0–1) have been prepared using mechanochemical activation (MA) of starting oxides in a high-power planetary ball mill. Studies of La2Mo2-xWxO9 genesis and structural properties using thermal analysis, XRD, SEM, IR, and Raman spectroscopy have revealed that MA results in the formation of an amorphous precursor, while the cubic β-phase is formed after calcination at 700–900 °C. Due to a high dispersion of powders, high-density pellets of W-LAMOX ceramics have been obtained already after sintering at 950 °C. Their electrical conductivity measured by the impedance spectroscopy depends on the W concentration being sufficiently high (up to 5.6?10?3 S/cm at 630 °C) at temperatures below 650 °C.  相似文献   

10.
The spinel phases Mn3-x Co x O4 are prepared directly and at low temperature (600-700°C) by means of thermal decomposition of mixed oxalate salt precursors in air or controlled atmosphere. The powders so obtained when sintered at 1200°C behave as semiconducting or insulating ceramics, depending on their cobalt content. The electrical properties of these ceramics have been found to be related to the distribution and valencies of the cations in the spinel structure. The study of their crystalline structure and stability, complemented by electrical measurements have permitted us to distinguish two types of compounds. The first type includes those given by Mn3-x Co x O4 with 0 < x < 1. These are stable at high temperature, have a tetragonal structure and are insulators. The cation distributions for them can be deduced from that of hausmannite as given by Mn2+ [Mn3+ 2]O4, by substituting Mn2+ ions with Co2+ ions. The second type of compounds correspond to the cubic phases and occur for 1 < x < 3. These are unstable at high temperature and show a lower resistivity (e.g. 360 ° cm) which is of particular interest for their application in the design of negative temperature coefficient (N.T.C.) thermistor components.  相似文献   

11.
BiFeO3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopts a higher heating/cooling rate during the sintering process than usually used. It was found that the calcination temperature T cal (from 400 to 750°C) does not influence the BFO phase formation, while the sintering temperature T sin (from 815 to 845°C) dominates the phase purity. The optimum sintering temperature was in the range from 825 to 835°C. The optimized samples exhibit saturated ferroelectric hysteresis loops with a remnant polarization of 13.2 μC/cm2. The measured piezoelectric coefficient d 33 was 45 pC/N. No remnant magnetization was observed in all of the samples. The pyroelectric properties were studied as a function of temperature and frequency. A pyroelectric coefficient as high as 90 μC/m2 K was obtained at room temperature in the optimized sample. An abrupt decrease of the pyroelectric coefficient was observed at temperatures between 70 and 80°C. On the basis of our results, BFO may have the potential for pyroelectric applications.  相似文献   

12.
《Solid State Ionics》1988,31(1):73-78
PbSnI4 has been prepared from equimolar amounts of PbI2 and SnI2. X-ray and DSC measurements show the material to be uniphase in the temperature range 30 to 400°C; it has a tetragonal structure and melts at 379°C. The electrical conductivity is mainly ionic with an ionic transport number greater than 0.99 at 200°C. Conductivity at room temperature is 2.56 × 10−8 Ω−1 cm−1 while the value at 200°C is 1.25 × 10−6 Ω−1 cm−1.  相似文献   

13.
Nanocrystalline Tm3+(5%)-doped BaTiO3 (BT-Tm) has been synthesized by the sol–gel method. The morphology, structure, and optical properties of powders and ceramics were characterized. The average grain size of the gel precursor annealed at 700 and 900 °C was 20 nm and 30 nm, respectively. These powders were single phase and crystallized with a cubic structure while the BT-Tm sintered ceramics were crystallized with the tetragonal BaTiO3 structure. The photoluminescence spectra showed typical transitions of Tm3+ ions and a structure consistent with the Tm3+ ions incorporation in the BaTiO3 crystalline lattice. Thermoluminescence peaks recorded at 300 °C (for annealed samples) or at 230 °C for the ceramic sample were assigned to the recombination of the Tm2+-electron traps located mainly at the surface of the nano-crystals or inside the microcrystals, respectively.  相似文献   

14.
The ions of Sb, As, and P have been implanted into germanium at energies ranging from 200 keV to 700 keV. Annealing was performed at 400°C, 550°C, and 650°C. The doping profile was determined by differentialCV-measurements. Strong outdiffusion (80%) and diffusion into the bulk material was observed after annealing. The remaining doping concentration and the diffusion constants were determined by a computer fit at 650°C. We foundD Sb=1.8×10−13 cm2/s,D As=9×10−14 cm2/s andD P=4×10−14 cm2/s. Lower values of the diffusion constant were determined when the samples were covered with a SiO2 layer.  相似文献   

15.
The sintering characteristic and dielectric properties of 0.67PMN–0.33PT ceramics prepared by the molten salt synthesis (MSS) method were investigated. PMN–PT particles synthesized by MSS with smaller grain size and good dispersion could lower the sintering temperature of ceramics; PMN–PT ceramics with relative density above 96% could be obtained in the range 1150–1180 °C. The molten salts species could significantly affect the microstructure and properties of MPN-PT ceramics. In the range 1100–1200 °C, PMN–PT ceramics from the sulfate flux MSS powders showed intergranular fracture, but that from the chloride flux MSS powder showed transgranular fracture. At the same sintering condition, the properties of PMN–PT ceramics from the powders prepared in the chloride flux are better than that from the powders prepared in the sulfate flux, their maximum dielectric constant εmax≈29,385 and piezoelectric constant d33≈660 pC/N. The above results demonstrated that PMN–PT ceramics prepared by the molten salts method possessed excellent piezoelectric and dielectric properties.  相似文献   

16.
Amorphous layers produced at the surface of iron by B+ and C+ implantation (50 kV, 1×1018 ions cm−2) were analyzed by CEMS. The CEM spectrum of B+ implanted layer was composed of broad doublet and sextet. Spread hyperfine field distribution, P(H), indicates the formation of extremely disordered FeB layer. Annealing at 400°C brought about precipitation of FeB, which was converted to Fe2B by annealing at 500°C. The P(H) for C+ implanted iron was resolved to 3 subpeaks with H values of 11.0, 18.0 and 22.5 T. The amorphous FeC phase was strongly correlated to crystalline Fe5C2 and Fe2C, which precipitated at 300°C and were transformed into Fe3C at 500°C. The amorphous layer disappeared by annealing at 600°C.  相似文献   

17.
The conductivity and thermal stability of H+(H2O)n β″ and ion rich β alumina single crystals have been measured by the complex impedance method in the 25–700°C temperature range. Two mechanisms of conductivity were assumed: proton transfer at lower temperatures and H3O+ diffusion in the high-temperature range. Both structures have similar properties, but ion rich β alumina possesses the best stability and the lowest activation energy (β: 0.15 eV, β″: 0.20 eV below 400 and 300°C respectively). The room-temperature conductivity is ≈5×10?6 Ω?1 cm?1. The conducting properties and mechanisms are discussed and compared to other protonic or ionic conductors.  相似文献   

18.
Following procedures formerly developed for the preparation of supported heterogeneous catalysts, carbon-coated cobalt nanoparticles dispersed on porous alumina have been prepared by impregnation of γ-Al2O3 with (NH4)2[Co(EDTA)] and thermal decomposition in inert atmosphere. Below 350 °C, Co(II) ions are complexed in a hexa-coordinated way by the EDTA ligand. The thermal treatment at 400–900 °C leads to the EDTA ligand decomposition and recovering of the support porosity, initially clogged by the impregnated salt. According to X-ray absorption spectroscopy, and due to in situ redox reactions between the organic ligand and Co(II), both oxidic and metallic cobalt phases are formed. Characterisation by transmission electron microscopy, X-ray diffraction and magnetic measurements reveals that an increase in the treatment temperature leads to an increase of the degree of cobalt reduction as well as to a growth of the cobalt metal particles. As a consequence, the samples prepared at 400–700 °C exhibit superparamagnetism and a saturation magnetisation of 1.7–6.5 emu g−1 at room temperature, whilst the sample prepared at 900 °C has a weak coercivity (0.1 kOe) and a saturation magnetisation of 12 emu g−1. Metal particles are homogeneously dispersed on the support and appear to be protected by carbon; its elimination by a heating in H2 at 400 °C is demonstrated to cause sintering of the metal particles. The route investigated here can be of interest for obtaining porous magnetic adsorbents or carriers with high magnetic moments and low coercivities, in which the magnetic nanoparticles are protected from chemical aggression and sintering by their coating.  相似文献   

19.
Si+ ions of 50 keV in energy were implanted into α-Fe (95% 57Fe) with a nominal dose of 5 × 1017 cm?2 at 350°C. The depth distribution of the Fe-Si phases formed by ion implantation after annealing at 300 and 400°C for 1 h was studied quantitatively by depth-selective conversion-electron Mössbauer spectroscopy (DCEMS). Ordered Fe3Si and ε-FeSi was observed.  相似文献   

20.
In the present work, lead-free piezoelectric ceramics (Na0.5Bi0.5)TiO3xCuO–yNiO (for x = 0.0, 0.02, 0.04 and 0.06) have been prepared by a conventional solid-state reaction method. An investigation of CuO and NiO doping in bismuth sodium titanate (BNT) and a study of the structure, morphology, and dielectric and ferroelectric properties of the NBT–CuNi system have been conducted. Phase and microstructural analysis of the (Na0.5Bi0.5)TiO3 (NBT) based ceramics has been carried out using X-ray diffraction and scanning electron microscopy (SEM) techniques. Field emission scanning electron microscopy (FE-SEM) images showed that inhibition of grain growth takes place with increasing Cu and Ni concentration. The results indicate that the co-doping of NiO and CuO is effective in improving the dielectric and ferroelectric properties of NBT ceramics. Temperature-dependent dielectric studies have also been carried out at room temperature to 400 °C at different frequencies. The NBT ceramics co-doped with x = 0.06 and y = 0.06 exhibited an excellent dielectric constant ?r = 1514. The study suggests that there is enormous scope of application of such materials in the future for actuators, ultrasonic transducers and high-frequency piezoelectric devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号