首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Capillary optics are used for X‐ray fluorescence micro‐analysis using the Cu Kα line provided by a rotating anode. The excitation beam is focused using a polycapillary lens on a Co–Ti sample. Cylindrical glass capillaries of various diameters are fitted to the X‐ray detector (Energy Dispersive X‐Ray (EDX) analyzer) and displaced along the irradiated zone of the sample. The fluorescence is studied as a function of capillary position. Good agreement is found between experimental and calculated lateral widths of the fluorescence collection, taken into account the cylindrical capillary critical angles relevant in the experiment. The influence of the cylindrical capillary diameter on the signal level detected is studied to estimate the possibility of lateral resolution increase of X‐ray fluorescence technique both in‐lab and in synchrotron environment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The relative intensities of M‐X‐ray satellites for heavy elements have been calculated. These satellite lines arise from X‐ray emission with multiple vacancy states in M and N shells. The origin of multiple vacancies is considered as the Coster–Kronig transition as well as the shake process. The calculated intensities are compared with the experimental results and other theoretical calculations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
X‐ray fluorescence computed tomography is an emerging imaging modality that allows for the nondestructive reconstruction of the internal distribution of elements within a sample. The common use of X‐ray excitation energy (up to approximately 20 keV) has necessitated the use of l ‐shell fluorescence for heavy elements. In this study, based on high energy X‐ray at BL13W1 of the Shanghai Synchrotron Radiation Facility, we employed high‐energy excitation for tomographic imaging of the heavy metals (rare earth elements) in fish teeth from deep‐sea sediments on the micrometer scale using K‐shell X‐ray fluorescence. The virtual cross‐sectional distribution of La, Ce, Pm, Pr, Nd, and Sm were obtained, thereby providing a feasible approach for analyzing the enrichment mechanism of rare earth elements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Detailed total reflection X‐ray fluorescence (TXRF) studies for the detection and quantification of low atomic number elements were carried out by using a laboratory dual source TXRF spectrometer equipped with a vacuum chamber and at the International Atomic Energy Agency multi‐purpose end‐station facility, operated at the XRF beamline of Elettra Sincrotrone Trieste, Italy. Multi‐elemental standard aqueous solutions of low Z elements (F, Na, Al, S, K, Sc, and Ti) with different elemental concentrations of 2, 10, 20, and 30 µg/ml were prepared and measured in both setups. The measurements at the synchrotron setup were performed in a scanning mode across the sample residue and perpendicular to the incident beam in order to account properly for a possible non‐uniform deposition of certain elements. The accuracy and the detection limits obtained from the TXRF measurements in both setups were determined and comparatively evaluated and assessed. Significant improvement in the TXRF detection limits at the synchrotron beamline end‐station was obtained for the elements with Z ≤ 13 (Al). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Energy dispersive X‐ray fluorescence (EDXRF) is widely used in the study of archeological metal artifacts, heritage and art history, where the fragile nature of the objects requires the use of noninvasive techniques such as the EDXRF, which in addition, is fast and very affordable. An EDXRF analysis of copper‐based artifacts from Late Bronze Age metal hoards from Central Portugal is presented. The EDXRF measurements were carried out by using an X‐ray tube with a Mo anode and a commercial Si‐PIN detector. The data acquisition was performed by keeping small distances between the X‐ray window, the sample and the detector. Both patinated and polished areas were analyzed: the relative composition of the artifacts was inferred from the fluorescence spectra obtained. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A bent‐crystal spectrometer based on the Rowland circle geometry has been installed and tested on the BM30b/FAME beamline at the European Synchrotron Radiation Facility to improve its performances. The energy resolution of the spectrometer allows different kinds of measurements to be performed, including X‐ray absorption spectroscopy, resonant inelastic X‐ray scattering and X‐ray Raman scattering experiments. The simplicity of the experimental device makes it easily implemented on a classical X‐ray absorption beamline. This improvement in the fluorescence detection is of particular importance when the probed element is embedded in a complex and/or heavy matrix, for example in environmental sciences.  相似文献   

8.
Elemental composition of aerosols is important to source apportionment studies and to understand atmospheric processes that influence aerosol composition. Energy dispersive X‐ray fluorescence spectroscopy was applied for measuring the elemental composition of Amazonian atmospheric aerosols. The instrument used was a spectrometer Epsilon 5, PANalytical B.V., with tridimensional geometry that reduces the background signal with a polarized X‐ray detection. The measurement conditions were optimized for low‐Z elements, e.g. Mg, Al, Si, that are present at very low concentrations in the Amazon. From Na to K, our detection limits are about 50% to 75% lower than previously published results for similar instrument. Calibration was performed using Micromatter standards, except for P whose standard was produced by nebulization of an aqueous solution of KH2PO4 at our laboratory. The multi‐element reference material National Institute of Standards and Technology–2783 (air particulate filter) was used for evaluating the accuracy of the calibration procedure of the 22 elements in our standard analysis routine, and the uncertainty associated with calibration procedures was evaluated. The overall performance of the instrument and validation of our measurements were assessed by comparison with results obtained from parallel analysis using particle‐induced X‐ray emission and another Epsilon 5 spectrometer. The elemental composition in 660 samples collected at a pristine site in the Amazon Basin and of 1416 samples collected at a site perturbed by land use change was determined. Our measurements show trace elements associated with biogenic aerosols, soil dust, biomass burning, and sea‐salt, even for the very low concentrations as observed in Amazonia. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A low‐cost and portable Energy Disperse X‐Ray Fluorescence imaging system is presented. It is capable of scanning large areas (up to 10 × 10 cm2) in steps as small as 0.2 mm. It consists of a small X‐ray tube and a Silicon Drift Detector, both controlled by a homemade software. The spatial resolution is evaluated as a function of the step width and of the X‐ray collimator diameter. The time of acquisition per unit of scanned surface is studied as a function of the step width and of the time of acquisition per point. X‐ray fluorescence images showing the 2D distributions of some elements in biological samples are presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Energy‐dispersive X‐ray fluorescence (EDXRF)‐analysis is a technique which in the case of metals analyzes thin surface layers. For example, when gold and silver alloys are analyzed, it typically interests a depth of microns up to a maximum of tens of microns. Therefore, it can give wrong results or be affected by a large indetermination when the sample composition is altered because of surface processes, as often happens when silver alloys are oxidated, and sometimes in the case of gold alloys rich on copper or silver. A complementary technique was therefore developed, of bulk analysis, which uses the same equipment employed for EDXRF‐analysis; the X‐ray beam from the X‐ray tube is monochromatized by means of a tin secondary target, which K lines bracket the silver‐K discontinuity. The sample to be analyzed is positioned between the secondary target and the detector. This technique is able to determine (by measuring the attenuation of tin‐K rays) thickness and/or composition of gold and silver alloys having a thickness of less than about 120 µm for gold and about 0.7 mm for silver. The method was tested with Au–Ag–Cu alloys of known composition and thickness and then applied to gold and silver artifacts from the tomb of the Lady of Cao, which belongs to the Moche pre‐hispanic culture from the North of Peru, and dates about 300 A.D. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Simultaneously acquired microanalytical X‐ray and electron energy loss signals are obtained from a bimetallic core–shell nanoparticle system (FePt@Fe3O4). The signals are decomposed using independent component analysis and the extracted components are used to separately quantify the composition of the spatially overlapping core and shell phases in the nanoheterostructure. The utilization of the complementary strengths of energy dispersive X‐ray and electron energy‐loss spectroscopy microanalysis has enabled the quantification of both light and heavy elements in a single spectrum image acquisition.  相似文献   

12.
The research of soil contamination by heavy metal is an important field due to its environmental and health implications. The goal was to study the elemental mobility as a function of depth. For this reason, the distribution of heavy metals (V, Cr, Co, Ni, Cu, Zn, As, Sn, and Pb) was investigated along soil profiles up to a depth of 15 m at 9 sampling sites in the Nilufer industrial district (Bursa, Turkey). Elemental analyses were done with the Epsilon 5 energy dispersive X‐ray fluorescence and inductively coupled plasma mass spectrometry equipment. Particle analysis was performed with a JEOL scanning electron microscope equipped with a Si(Li) X‐ray detector. The crystallographic compositions of oxide compounds in soil samples were identified by a Rigaku X‐ray diffraction instrument. Different parameters such as the soil's chemical (mineralogical structure, pH, and electrical conductivity) and physical properties (the number of blows, the stiffness index, the liquidity index, the plasticity index, and the water content) were analyzed. To assess the mobility of the heavy metals, diffusion (D) and convection coefficients (?) were calculated with the finite difference method. Convection was determined to dominate the studied region. In addition, the mobility coefficient was determined for each metal. High mobilities were determined for Zn and V, moderate mobilities for Cr, Ni, Cu, and As, and low mobilities were determined for Co and Pb. The results revealed that elements had reached depths of up to 15 m, causing irreversible soil contamination that may lead to environmental health issues.  相似文献   

13.
14.
Pd/Y multilayers are high‐reflectance mirrors designed to work in the 7.5–11 nm wavelength range. Samples, prepared by magnetron sputtering, are deposited with or without B4C barrier layers located at the interfaces of the Pd and Y layers to reduce interdiffusion, which is expected from calculating the mixing enthalpy of Pd and Y. Grazing‐incident X‐ray reflectometry is used to characterize these multilayers. B4C barrier layers are found to be effective in reducing Pd–Y interdiffusion. Details of the composition of the multilayers are revealed by hard X‐ray photoemission spectroscopy with X‐ray standing wave effects. This consists of measuring the photoemission intensity from the samples by performing an angular scan in the region corresponding to the multilayer period and an incident photon energy according to Bragg's law. The experimental results indicate that Pd does not chemically react with B nor C at the Pd–B4C interface while Y does react at the Y–B4C interface. The formation of Y–B or Y–C chemical compounds could be the reason why the interfaces are stabilized. By comparing the experimentally obtained angular variation of the characteristic photoemission with theoretical calculations, the depth distribution of each component element can be interpreted.  相似文献   

15.
A high‐resolution X‐ray fluorescence spectrometer based on Rowland circle geometry was developed and installed at BL14W1 XAFS beamline of Shanghai Synchrotron Radiation Facility. The spectrometer mainly consists of three parts: a sample holder, a spherically curved Si crystal, and an avalanche photodiode detector. The simplicity of the spectrometer makes it easily assembled on the general purpose X‐ray absorption beamline. X‐ray emission spectroscopy and high‐resolution X‐ray absorption near edge spectroscopy can be carried out by using this spectrometer. X‐ray emission preliminary results with high‐resolution about 3 eV of Mn compounds were obtained, which confirmed the feasibility of the spectrometer. The application about Eu (III) retention on manganese dioxide was also studied using this spectrometer. Compared with conventional X‐ray absorption fine structure spectroscopy technique, the fluorescence peak of probed element [Eu (III) Lα] and matrix constituents (Mn Kα) were discriminated using this technique, indicating its superiority in fluorescence detection. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A new prism‐array lens for high‐energy X‐ray focusing has been constructed using an array of different prisms obtained from different parabolic structures by removal of passive parts of material leading to a multiple of 2π phase variation. Under the thin‐lens approximation the phase changes caused by this lens for a plane wave are exactly the same as those caused by a parabolic lens without any additional corrections when they have the same focal length, which will provide good focusing; at the same time, the total transmission and effective aperture of this lens are both larger than those of a compound kinoform lens with the same focal length, geometrical aperture and feature size. This geometry can have a large aperture that is not limited by the feature size of the lens. Prototype nickel lenses with an aperture of 1.77 mm and focal length of 3 m were fabricated by LIGA technology, and were tested using CCD camera and knife‐edge scan method at the X‐ray Imaging and Biomedical Application Beamline BL13W1 at Shanghai Synchrotron Radiation Facility, and provided a focal width of 7.7 µm and a photon flux gain of 14 at an X‐ray energy of 50 keV.  相似文献   

17.
《X射线光谱测定》2005,34(6):473-476
Energy dispersive X‐ray spectrometry offers the opportunity for fast composition determination of specimens by X‐ray fluorescence or electron probe microanalysis. For fundamental parameter based quantification, the knowledge of the detection efficiency of the spectrometer is essential. At low energies the efficiency is strongly influenced by X‐ray absorption in the radiation entrance window. State‐of‐the‐art windows consist of polymer foil containing C, N, and O, coated with Al and in some cases with a special B compound. The foil is supported by a Si grid to withstand the atmosphere pressure. The absorption of all these components must be known to describe the detection efficiency. The transmittance of three types of widely used commercial windows has been measured. Transmittance curves have been fitted by analytical expressions using tabulated mass absorption coefficients. Because tabulated mass absorption coefficients do not consider near edge effects, there are strong deviations between measured and calculated transmittance below 0.6 keV. It is proposed to model the spectrometer efficiency by the measured window transmittance and calculated absorptions from front contact and possible contaminations. This reduces the number of unknown parameters drastically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Grazing incidence X‐ray methods are well‐established in the characterization of nanostructures at interfaces and surfaces. The purpose of the experiments reviewed in this work is the comparative characterization of different instrumentation concepts for grazing incidence X‐ray fluorescence analyses. Fluorescence scans recorded with a total reflection X‐ray fluorescence spectrometer featuring a variable angle of incidence are compared with data obtained with synchrotron radiation. The conclusions to the element distribution profiles, which are drawn from fluorescence scans carried out with the respective instrument, are compared. This way, the suitability of the total reflection X‐ray fluorescence spectrometer to complement synchrotron radiation facilities and the possibility to transfer surface and interface analyses from the synchrotron to the laboratory are assessed. The structures investigated include an Au on Si surfaces in the form of layers and particles, submicrometer‐sized droplets, a liquid film, and ions implanted into a Si wafer. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Soft‐X‐ray angle‐resolved photoelectron spectroscopy (ARPES) with photon energies around 1 keV combines the momentum space resolution with increasing probing depth. The concepts and technical realisation of the new soft‐X‐ray ARPES endstation at the ADRESS beamline of SLS are described. The experimental geometry of the endstation is characterized by grazing X‐ray incidence on the sample to increase the photoyield and vertical orientation of the measurement plane. The vacuum chambers adopt a radial layout allowing most efficient sample transfer. High accuracy of the angular resolution is ensured by alignment strategies focused on precise matching of the X‐ray beam and optical axis of the analyzer. The high photon flux of up to 1013 photons s?1 (0.01% bandwidth)?1 delivered by the beamline combined with the optimized experimental geometry break through the dramatic loss of the valence band photoexcitation cross section at soft‐X‐ray energies. ARPES images with energy resolution up to a few tens of meV are typically acquired on the time scale of minutes. A few application examples illustrate the power of our advanced soft‐X‐ray ARPES instrumentation to explore the electronic structure of bulk crystals with resolution in three‐dimensional momentum, access buried heterostructures and study elemental composition of the valence states using resonant excitation.  相似文献   

20.
Recently, the authors have presented experimental evidences that for some energy windows, proton‐induced W L shell X‐rays intensity ratios of transitions to L1 subshell depend on the ion beam energy and on the chemical species even after known matrix effects are subtracted. These results, which put in question the assumption of the invariance of the relative intensity of X‐ray transitions to the same atomic subshells, are further exploited in this work, where more data for three different W compounds (W, Li2WO4 and P2O5.24WO3.xH2O) are presented followed by a detailed study using an ultra‐pure (99.995%) W thick foil, used to avoid any possible target contamination interference on the results. Samples were irradiated by H+ beams in various conditions in the energy range between 0.25 and 2.38 MeV and by He2 + beams having energies between 3.5 and 5.0 MeV. Spectra were collected using the Si(Li) detector at CTN 2.5 MV Van de Graaff standard Proton‐Induced X‐ray Emission (PIXE) set‐up as well as using the Energy Dispersive Spectrometry (EDS) high resolution X‐ray microcalorimeter spectrometer (XMS) at CTN 3.0 MV Tandetron accelerator high resolution high energy (HRHE) PIXE end station. Results were normalized to the theoretical intensity ratios and plotted as function of the ratio of collision characteristic times allowing the comparison of H+ and He2 + results. W L X‐rays intensity ratio variations are presented and compared with theoretical expected results. Radiative Auger emission transitions observed in an EDS high resolution XMS spectra are shown to probably play a crucial role in the highly unexpected results obtained for intensity ratios of transitions to the same subshell. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号