首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Polyelectrolyte multilayer films adsorbed on gold surfaces were studied by combined ellipsometric and electrochemical methods. Multilayers were composed of “synthetic” (poly(4-styrenesulfonic acid) ammonium salt (PSS) and poly(allylamine hydrochloride) (PAH) (PSS/PAH)) and “semi-natural” (carboxymethyl cellulose (CMC) and chitosan (CHI) (CMC/CHI)) polyelectrolytes. It was found that only PSS/PAH Layer-by-Layer (LbL) assembled structures result in dense surface confined films that limit permeability of small molecules, such as ferri-/ferrocyanide. The PSS/PAH assemblies can be envisaged as films with pinholes, through which small molecules diffuse. During the LbL deposition process of these films a number of pinholes quickly decay. A representative pinhole diameter was found to be approximately 20 μm, which determines the diffusion of small molecules through LbL films, and yet remains constant when the film consists of a few LbL assembled polyelectrolyte bilayers. CMC/CHI LbL assemblies at gold electrode surfaces give very low density films, which do not limit the diffusion of ferri-/ferrocyanide between the surface of the electrode and the solution.  相似文献   

2.
An efficient method for characterizing wetting properties of heterogeneous surfaces produced by sequential adsorption of polyelectrolytes was developed. Three types of polyelectrolytes were used: polyallylamine hydrochloride (PAH), polyethyleneimine (PEI), both of a cationic type, and polysodium 4-styrenesulfonate (PSS), of an anionic type. Multilayer films were prepared by 'layer-by-layer' (LbL) deposition technique. Natural ruby mica, glass, titanium foil and silicon wafers were used as the support material for PE films. Wetting of polyelectrolyte films was determined experimentally by contact angle measurements, using technique of direct image analysis of shape of sessile drops. Periodic oscillations in contact angle values were observed for multilayers terminated by polycation and polyanion, respectively, and the variations in contact angle values strongly depended on the conditions of adsorption and multilayer treatment after deposition. Therefore, the influence of ionic strength of polyelectrolyte solution used for deposition on wetting of multilayer films was considered and also the effect of conditioning in different environments was investigated. It is usually assumed that film properties and stability strongly depend on the first layer which is used to anchor a multilayer at the surface of support material. To investigate influence of the first layer, PAH/PSS films were compared with more complex ones having PEI as the first layer with a sequence of PSS/PAH deposited on top of it.  相似文献   

3.
We demonstrate that the surface morphology and surface-wetting behavior of layer-by-layer (LbL) films can be controlled using different deposition methods. Multilayer films based upon hydrogen-bonding interactions between hydrophobically modified poly(ethylene oxide) (HM-PEO) and poly(acrylic acid) (PAA) have been prepared using the dip- and spin-assisted LbL methods. A three-dimensional surface structure in the dip-assisted multilayer films appeared above a critical number of layer pairs owing to the formation of micelles of HM-PEO in its aqueous dipping solution. In the case of spin-assisted HM-PEO/PAA multilayer films, no such surface morphology development was observed, regardless of the layer pair number, owing to the limited rearrangement and aggregation of HM-PEO micelles during spin deposition. The contrasting surface morphologies of the dip- and spin-assisted LbL films have a remarkable effect on the wetting behavior of water droplets. The water contact angle of the dip-assisted HM-PEO/PAA LbL films reaches a maximum at an intermediate layer pair number, coinciding with the critical number of layer pairs for surface morphology development, and then decreases rapidly as the surface structure is evolved and amplified. In contrast, spin-assisted HM-PEO/PAA LbL films yield a nearly constant water contact angle due to the surface chemical composition and roughness that is uniform independent of layer pair number. We also demonstrate that the multilayer samples prepared using both the dip- and spin-assisted LbL methods were easily peeled away from any type of substrate to yield free-standing films; spin-assisted LbL films appeared transparent, while dip-assisted LbL films were translucent.  相似文献   

4.
A facile way to prepare free-standing polyelectrolyte multilayer films of poly(sodium 4-styrenesulfonate)(PSS)/poly(diallyldimethylammonium)(PDDA) was developed by applying a new pH-dependent sacrificial system based on cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) microgels. The tertiary amine groups of PDMAEMA microgels can be protonated in acidic environment, and the protonated microgels were deposited by layer-by-layer (LbL) technique with PSS. PSS/PDDA multilayer films were constructed on the top of the PSS/microgels sacrificial layers. The LbL assembly process was investigated by UV–vis spectroscopy. Further study shows that the free-standing PSS/PDDA multilayer films can be obtained within 3 min by treating the as-prepared films in alkali aqueous solution with a pH of 12.0. The pH-triggered exfoliation of PSS/PDDA multilayer films provides a simple and facile way to prepare LbL assembled free-standing multilayer films.  相似文献   

5.
介绍了近几年来我们研究组在层状组装膜的构筑以及功能化研究方面取得的一些最新进展.包括结合表面溶胶-凝胶技术与静电层状组装技术,实现了二阶非线性基团在层状组装多层膜中的非对称排列,制备了具有二阶非线性效应的膜材料;采用室温压印技术,发展了一种简便、经济和具有普适性的层状组装聚合物膜图案化方法;以轻度交联的聚合物微凝胶为构筑基元,制备了具有高负载量的聚合物层状组装膜;发展了一种基于离子剥离技术的层状组装自支持膜制备方法;基于层状组装技术,制备了具有超疏水和抗反射功能的涂层.  相似文献   

6.
Graphene/azo polyelectrolyte multilayer films were fabricated through electrostatic layer-by-layer (LbL) self-assembly, and their performance as electrochemical capacitor electrode was investigated. Cationic azo polyelectrolyte (QP4VP-co-PCN) was synthesized through radical polymerization, postpolymerization azo coupling reaction, and quaternization. Negatively charged graphene nanosheets were prepared by a chemically modified method. The LbL films were obtained by alternately dipping a piece of the pretreated substrates in the QP4VP-co-PCN and nanosheet solutions. The processes were repeated until the films with required numbers of bilayers were obtained. The self-assembly and multilayer surface morphology were characterized by UV-vis spectroscopy, AFM, SEM, and TEM. The performance of the LbL films as electrochemical capacitor electrode was estimated using cyclic voltammetry. Results show that the graphene nanosheets are densely packed in the multilayers and form random graphene network. The azo polyelectrolyte cohesively interacts with the nanosheets in the multilayer structure, which prevents agglomeration of graphene nanosheets. The sheet resistance of the LbL films decreases with the increase of the layer numbers and reaches the stationary value of 1.0 × 10(6) Ω/square for the film with 15 bilayers. At a scanning rate of 50 mV/s, the LbL film with 9 bilayers shows a gravimetric specific capacitance of 49 F/g in 1.0 M Na(2)SO(4) solution. The LbL films developed in this work could be a promising type of the electrode materials for electric energy storage devices.  相似文献   

7.
We report a facile means to achieve planarization of nonflat or patterned surfaces by utilizing the layer-by-layer (LbL) assembly of highly diffusive polyelectrolytes. The polyelectrolyte pair of linear polyethylenimine (LPEI) and poly(acrylic acid) (PAA) is known to maintain intrinsic diffusive mobility atop or even inside ionically complexed films prepared by LbL deposition. Under highly hydrated and swollen conditions during the sequential film buildup process, the LbL-assembled film of LPEI/PAA undergoes a topological self-deformation for minimizing surface area to satisfy the minimum-energy state of the surface, which eventually induces surface planarization along with spontaneous filling of surface textures or nonflat structures. This result is clearly different from other cases of applying nondiffusive polyelectrolytes onto patterned surfaces or confined structures, wherein surface roughening or incomplete filling is developed with the LbL assembly. Therefore, the approach proposed in this study can readily allow for surface planarization with the deposition of a relatively thin layer of polyelectrolyte multilayers. In addition, this strategy of planarization was extended to the surface modification of an indium tin oxide (ITO) substrate, where surface smoothing and enhanced optical transmittance were obtained without sacrificing the electronic conductivity. Furthermore, we investigated the potential applicability of surface-treated ITO substrates as photoelectrodes of dye-sensitized solar cells prepared at room temperature. As a result, an enhanced photoconversion efficiency and improved device characteristics were obtained because of the synergistic role of polyelectrolyte deposition in improving the optical properties and acting as a blocking layer to prevent electron recombination with the electrolytes.  相似文献   

8.
In this letter, we have developed a facile method to enhance the stability of polyelectrolyte multilayers. We fabricate conventional polyelectrolyte multilayers of PAH/PAA through electrostatic layer-by-layer (LbL) assembly and then postinfiltrate photosensitive cross-linking agent 4,4'-diazostilbene-2,2'-disulfonic acid disodium salt into the LbL films. After cross-linking by UV irradiation, the stability of the photo-cross-linked multilayer is highly improved as evidenced by the lack of dissolution under ultrasonication in saturated SDS aqueous solutions for 10 min. Moreover, by taking advantage of the different stability of the LbL film before and after UV irradiation, a patterned surface can be achieved.  相似文献   

9.
We describe a simple layer-by-layer (LbL) technology and counterion exchange procedure to tune the liquid wettability of commercially available cotton fabrics. A polyelectrolyte multilayer is deposited on the fabric surface by the LbL technology, and counterion exchange is used to control the surface composition and thereby to modulate the solid surface energy. The tunability of the solid surface energy, along with the inherent re-entrant texture of the cotton fabric, results in simultaneously switchable wettability between a nonwetting state and a fully wetted state for water and hexadecane. This switchable hydrophobicity and oleophobicity can be explained within a robustness factor, which is a quantitative criterion for the transition between the two states. The counterion exchange can be confirmed by X-ray photoelectron spectroscopy analysis.  相似文献   

10.
Formamide, in its pure state, has been used as a working solvent for layer-by-layer (LbL) polyelectrolyte self-assembly. Polystyrene sulfonate (PSS) and polyallylamine hydrochloride (PAH) polyelectrolyte films were deposited onto planar substrates and colloidal particles. Film deposition was confirmed using quartz crystal microbalance and zeta potential measurements. Formamide was used as an alternative to the water-based working solvents commonly used for LbL self-assembly. Few LbL self-assembly studies using nonaqueous solvents have been reported. Most studies performed with nonaqueous solvents have required the addition of small volumes of water to dissolve the polyelectrolytes. Conversely, the high dielectric constant of pure formamide led to the dissolution and transport of PSS and PAH. Using formamide, it is possible to deposit nanometer thick polyelectrolyte films onto water-sensitive surfaces. Formamide can be thus be used for encapsulating water sensitive hydrogen storage materials within polyelectrolyte films.  相似文献   

11.
智能响应与自修复的层层组装聚合物膜   总被引:2,自引:0,他引:2  
陈栋栋  马莹  孙俊奇 《高分子学报》2012,(10):1047-1054
具有刺激响应性和自修复功能的复合膜是重要的仿生功能膜材料.层层组装是一种基于物质交替沉积而制备复合膜的方法,可以实现膜的结构和组成的精确调控.通过结构与组成的精确调控,基于层层组装制备的微米厚度的聚电解质厚膜可以对外界刺激产生快速有效的响应,因而在制备智能仿生膜材料方面具有重要的价值.本文以作者的研究结果为基础,阐明了基于层层组装的聚电解质膜可以成功用于制备湿度和温度响应的双结构自支持膜和高效的促动器及行走机器,以及自修复超疏水和划痕修复聚电解质膜.  相似文献   

12.
Taking advantage of the stability and penetrability of layer-by-layer (LbL) films, we develop a novel method to fabricate a branchlike structure of Ag aggregates on the matrix of a LbL polyelectrolyte multilayer by an electrodeposition technique. The morphology of Ag aggregates can be adjusted by electrodeposition time and potential. Moreover, after further chemisorption of a self-assembled monolayer of n-dodecanethiol, the as-prepared surface becomes superhydrophobic with a contact angle as high as 154 degrees and a tilt angle lower than 3 degrees.  相似文献   

13.
Inspired by the superhydrophobic effect displayed in nature, we set out to mimic the interplay between the chemistry and physics in the lotus leaf to see if the same design principle can be applied to control wetting and adhesion between toners and inks on various printing surfaces. Since toners and inks are organic materials, superoleophobicity has become our design target. In this work, we report the design and fabrication of a model superoleophobic surface on silicon wafer. The model surface was created by photolithography, consisting of texture made of arrays of ~3 μm diameter pillars, ~7 μm in height with a center-to-center spacing of 6 μm. The surface was then made oleophobic with a fluorosilane coating, FOTS, synthesized by the molecular vapor deposition technique with tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane. Contact angle measurement shows that the surface exhibits super repellency toward water and oil (hexadecane) with a water and hexadecane contact angles at 156° and 158°, respectively. Since the sliding angles for both liquids are also very small (~10°), we conclude that the model surface is both superhydrophobic and superoleophobic. By comparing with the contact angle data of the bare silicon surfaces (both smooth and textured), we also conclude that the superoleophobicity is a result of both surface texturing and fluorination. Results from investigations of the effects of surface modification and pillar geometry indicate that both surface oleophobicity and pillar geometry are contributors to the superoleophobicity. More specifically, we found that superoleophobicity can only be attained on our model textured surface when the flat surface coating has a relatively high oleophobicity (i.e., with a hexadecane contact angle of >73°). SEM examination of the pillars with higher magnification reveals that the side wall in each pillar is not smooth; rather it consists of a ~300 nm wavy structure (due to the Bosch etching process) from top to bottom. Comparable textured surfaces with (a) smooth straight side wall pillars and (b) straight side wall pillars with a 500 nm re-entrant structure made of SiO(2) were fabricated and the surfaces were made oleophobic with FOTS analogously. Contact angle data indicate that only the textured surfaces with the re-entrant pillar structure are both superoleophobic and superhydrophobic. The result suggests that the wavy structure at the top of each pillar is the main geometrical contributor to the superoleophobic property observed in the model surface.  相似文献   

14.
Well dispersed polyoxometalate nanorods have been selectively and controllably synthesized within the polyelectrolyte (PE) films via a layer-by-layer (LbL) adsorption-precipitation method. The PE matrix was fabricated by LbL self-assembly technology and then the multilayer films containing polyoxometalate nanorods were constructed by repetitive adsorption of polyanions and subsequent precipitation with counter ions-tetraethylammonium bromide (TEAB). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to observe the variation of size and morphology of the nanorods. The growth process and composition of the multilayer films containing nanorods were also studied.  相似文献   

15.
The adsorption of HSA onto CHI/ALG multilayer assemblies was assessed in situ using QCM-D. It was found that the behavior of HSA on biomaterials surface can be tuned by adjusting parameters of the polyelectrolyte system such as pH, layer number, crosslinker and polymer terminal layer. Our results confirmed the key role of electrostatic interactions during HSA adsorption, since oppositely charged surfaces were more effective in promoting protein adhesion. QCM-D data revealed that crosslinking (CHI/ALG)(5) CHI films allows HSA to become adsorbed in physiological conditions. Our results suggested that the biological potential of biopolymers and the mild conditions of the LbL technique turn these natural nanoassemblies into a suitable choice to be used as pH-sensitive coatings.  相似文献   

16.
Taking the advantage of the stability and penetrability of polyelectrolyte films formed by layer-by-layer (LbL) deposition, noble metal particles of Pd and Pt were fabricated in a preformed polyeletrolyte multilayer film by galvanic deposition. The metal deposition occurred as metal particles and they were tested for their properties as electrocatalyst for oxygen reduction. Atomic force microscopy (AFM) was used to characterize the morphology of the particle films. The noble metal particles were investigated by cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM) with respect to oxygen reduction. The results show that the electrocatalytic properties of the Pd particle film can be adjusted by the electrodeposition time. The hydrogen peroxide formed as an intermediate during electroreduction of dioxygen was conveniently measured in the SECM using the substrate-generation/tip-collection mode. The relevance of the main reduction pathways could be extracted from fitting the current transients to an analytical model.  相似文献   

17.
The paper is concerned with the deposition of self-assembled polyelectrolyte multilayer on Nafion membrane by layer-by-layer (LbL) technique with lowered methanol cross-over for direct methanol fuel cell (DMFC) applications. The formation of self-assembled multilayered film on Nafion was characterized by UV–vis spectroscopy and it was found that the polyelectrolyte layers growth on the Nafion surface regularly. Furthermore, the proton conductivity and methanol cross-over measurements were carried out for characterization of the LbL self-assembled composite membranes. The results showed that the concentration and pH of the polyelectrolytes significantly affect the proton conductivity and methanol barrier properties of the composite membranes. 10−1 monomol polyelectrolyte concentration and pH 1.8 was found to be optimum deposition conditions considering proton conductivity and methanol permeation properties of the LbL self-assembled composite membranes. The methanol permeability of the 10 bi-layers of PAH1.8/PSS1.8 deposited LbL self-assembly composite membrane was significantly suppressed and found to be 4.41 × 10−7 cm2/s while the proton conductivity value is in acceptable range for fuel cell applications.  相似文献   

18.
The multilayer films of branched polyethyleneimine (BPEI) and poly(acrylic acid) (PAA) have been fabricated with the layer-by-layer (LbL) method. Two characteristic courses of the film thickness growth are observed, which are the initial exponential-like growth and the following linear growth. The variation of the COOH/COO- ratio indicates that the ionization degree of the polyelectrolyte molecules decreases at the initial stage of the multilayer buildup and then levels off after about eight bilayers. The as-prepared (BPEI/PAA)n films show a relatively smooth surface. However, great morphology changes occur after immersing these films in Cu2+ or Zn2+ solution. In the case of n > or =7, wavelike surface patterns are induced to form on the films. Both wavelength and fluctuation of these surface patterns show a systematical variation with an increase of the bilayer number. Moreover, thermal treatment can stabilize these patterns and enable the preservation of them after releasing the Cu2+ ions from the LbL films by acidic treatment. Interestingly, only Cu2+ and Zn2+ can induce the formation of such surface patterns, whereas Fe2+, Ca2+, Ag+, and Na+ cannot. This phenomenon may closely relate to the different natures of the metal ions.  相似文献   

19.
表面印迹交替层状组装薄膜   总被引:1,自引:0,他引:1  
在简要概述非常规交替层状组装这一进展后,重点总结了如何利用非常规交替层状组装以实现表面印迹膜的制备.模板分子与聚电解质在溶液中组装形成超分子复合物,然后以此超分子复合物为构筑基元,与感光性高分子,如重氮树脂,通过常规交替层状组装形成聚合物多层膜.利用聚合物多层膜之间的光化学反应形成稳定的多层膜,然后去除模板分子得到分子...  相似文献   

20.
The deposition of polyelectrolyte multilayer films (PEMs) appears more and more as a versatile tool to functionalize a broad range of materials with coatings having controlled thicknesses and properties. To increase the control over the properties of such coatings, a good knowledge of their deposition mechanism is required. Since Cohen Stuart et al. (Langmuir 18 (2002) 5607-5612) showed that the adsorption of one polyelectrolyte could induce desorption of polyelectrolyte complexes instead of regular deposition, more and more findings highlight peculiarities in the deposition of such films. Herein we demonstrate that the association of sodium polyphosphate (PSP) as the polyanion and either poly(-L-lysine hydrobromide) (PLL) or poly(allylamine chloride) (PAH) as the polycations may lead to non-monotonous film deposition as a function of time. Complementary, films containing PSP and PLL can be obtained from a (PLL-HA)(n) template films after the exchange of HA (hyaluronic acid) from the sacrificial template by PSP from the solution. This exchange is accompanied by pronounced film erosion. However, when starting from a (PAH-HA)(n) template, the film erosion and exchange due to the contact with PSP is by far less pronounced, nevertheless the film morphology changes. These findings show that the nature of the polycation used to deposit the PEM film may have a profound influence of the film's response to a competing polyanion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号