首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic and magnetic structures of ordered double perovskites Ba2TMoO6 (T=V, Cr, Mn, Fe and Co) are systematically investigated by means of the first-principle linear muffin-tin orbitals with the atomic-sphere approximation (LMTO-ASA) method. The calculations are performed by using the both local spin density approximation (LSDA) and the LSDA+U Coulomb interaction schemes. The results show a half-metallic ferrimagnetic ground states for T=Cr, Fe and Co in LSDA+U treatment, whereas half-metallic ferromagnetic character is observed for T=V. For T=Mn, insulating ground state is obtained, stabilized in the antiferromagnetic state. The LSDA+U calculations yield better agreement with the theoretical and the experimental results than do the LSDA.  相似文献   

2.
In this work, we present a study of the structural, elastic and electronic properties of the Al2Ge2RE (RE=Y, La, Ce, Nd, Eu, Gd, Tb, Yb and Lu) through the approaches of generalized gradient approximation (GGA) and local spin density approximation with the Hubbard energy (LSDA+U) based on density-functional theory. For most of the compounds (RE=Y, La, Ce, Nd, Eu, Yb and Lu), the results of the structural constants calculated from the approach of LSDA+U are in good agreement with the reported experimental data. Both the approaches of GGA and LSDA+U have been used to calculate DOS. Compared with the results of the GGA approach, the LSDA+U is more credible because it can show the influence of RE-f states and the RE-f states play an important role in the compound. The magnetic property has been investigated according to the result of DOS and it shows that the Al2Ge2Y, Al2Ge2La, Al2Ge2Y b and Al2Ge2Lu do not exhibit obvious magnetic property, while the other five ternary compounds are magnetic. The Voigt-Reuss-Hill (VRH) approach is used to calculate the elastic properties including bulk and shear moduli. The results of the calculated Poisson’s ratio ν and the B/G ratio demonstrate that all the Al2Ge2RE ternary compounds are brittle materials. The compounds, i.e. Al2Ge2Nd, Al2Ge2Eu, Al2Ge2Gd and Al2Ge2Tb which are mechanically unstable, display differences with the other five in the elastic properties.  相似文献   

3.
We have calculated the on-site Coulomb repulsion (U) for the transition elements Co and Fe. To study the impact of Hubbard potential or on-site Coulomb repulsion (U) on structural and electronic properties the calculated values of U were added on GGA and LSDA. We performed the structure optimization of Co2FeGe based on the generalized gradient approximation (GGA and GGA+U). The calculation of electronic structure was based on the full potential linear augmented plane wave (FP-LAPW) method and local spin density approximation (LSDA) as well as exchange correlation LSDA+U. The Heusler alloy Co2FeGe fails to give the half-metallic ferromagnetism (HMF) when treated with LSDA. The LSDA+U gives a good result to prove that Co2FeGe is a HMF with a large gap of 1.10 eV and the Fermi energy (EF) lies at the middle of the gap of minority spin. The calculated density of states (DOS) and band structure show that Co2FeGe is a HMF when treated with LSDA+U.  相似文献   

4.
The electronic and magnetic properties of NdCrSb3 are calculated by the first principles full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). Density of states (DOS), magnetic moments and band structures of the system are presented. For the exchange and correlation energy, local spin density approximation (LSDA+U) with the inclusion of Hubbard potential U is used. Our calculation shows that the 3d state electron of Cr and 4f state electrons of Nd contribute to the total DOS and the band structures. The effective magnetic moment is found to be 5.77μB, which is comparable to the earlier experimental results of NdCrSb3.  相似文献   

5.
First-principles calculations, by means of the full-potential augmented plane wave method using the LSDA+U approach (local spin density approximation with Hubbard-U corrections), have been carried out for the electronic structure of the Al0.75Er0.25N. The LSDA+U method is applied to the rare-earth 4? states. We have investigated the electronic and magnetic properties.The Al0.75Er0.25N is shown to be a semiconductor, where the filled ? states are located in the valence bands and the empty ones above the conduction band edge. The magnetic interaction of the rare-earth ion with the host states at the valence and conduction band edges has been investigated and discussed.  相似文献   

6.
Q.F. Li  X.F. Zhu 《Physics letters. A》2008,372(16):2911-2916
The electronic structures and magnetic properties of double perovskites Sr2Fe1−xCrxReO6 (x=0.0, 0.25, 0.5, 0.75, 1.0) have been studied within the local spin density approximation (LSDA) and LSDA+U schemes. The calculated results reveal that with increasing Cr content the cell volume shrinks 2.61%; the Fe/Cr site magnetic moment decreases while the Re-site moment increases. The total spin magnetic moment linearly decreases with the Cr doping from 3.00μB for x=0.00 down to 1.00μB for x=1.00 per formula unit. The magnetic coupling constants increase with increasing x. The electronic structure calculations indicate that the electronic concentration in the Re spin-down subband slightly increases resulting from the increase of bonding-antibonding interaction between the localised and the delocalised states in spin-down band; the coupling of O-2p and transition-metal-3d is substantially enhanced with the Cr doping. We discuss the origin of the anomalously high TC of Cr-doped Sr2FeReO6 compounds in terms of band hybridization effects.  相似文献   

7.
易勇  李恺  丁志杰  易早  罗江山  唐永建 《物理学报》2011,60(10):107502-107502
考虑Pr-4f及Ni-3d电子间的库仑作用U和交换作用J,采用局域自旋密度近似LSDA(Local spin-density approximation)及LSDA+U(在位库仑势)近似,对Ni4PrB化合物进行结构优化,并计算体系电子结构,能带结构和磁性能. 结果显示,Ni4PrB具备金属半导体性质,存在Pr-Ni铁磁耦合. U的引入对体系磁特性和结构稳定性有关键作用,加U前体系磁性来源为Ni原子磁矩,加U后体系磁性来源为Pr原子,且体系稳定性提高,U值的作用对于修正体系强关联有重要影响,可以合理描述由强关联和自旋排斥引发的排斥效应. 关键词: 密度泛函理论 电子键结构 磁性能 稀土过渡金属间化合物  相似文献   

8.
9.
The magnetic properties, electronic structure, and optical properties of the filled skutterudite BaFe4Sb12 are calculated by the first-principles full-potential linearized augmented plane wave (FPLAPW) plus local orbital method. It is found that the local spin density approximation (LSDA) method appears more accurate than the generalized gradient approximation (GGA) method in calculating the electronic structures and optical properties of this compound. Furthermore, our calculated lattice constant and spin magnetic moments with the LSDA method are in overall better agreement with experiment. In contrast with recent experiment, our calculations are in good agreement with experimental reflectivity spectra and optical conductivity spectrum.  相似文献   

10.
Particularly interesting as candidates to technological applications are the manganese perovskites with AMnO3 formula. Their magnetic structure was described as resulting from a particular ordering of the occupied d orbitals which possess. This reflects my understanding of the structural, electronic and magnetic phenomena, which is well established only in the limit where the systems show localized or itinerant electron behavior. In general, the perovskites of ABO3-type are well known with their (anti)ferroelectric, piezoelectric and (anti)ferromagnetism properties applied in considerable technological investigations. In my paper, I studied the ground states properties of the BaMnO3 perovskite oxide. My structural properties are given using LSDA, GGA, LSDA+U and GGA+U in the aim to introduce the exchange correlation potential. In the following paper, I use the GGA+U on the electronic and magnetic properties calculation. I show in my study the density of states, the band structures and also the charge density figures. My results such as lattice parameter, bulk modulus and its pressure derivative agree very well with available theoretical works and experimental data. I discuss the magnetic moment and the U-Hubbard effect introduced by LSDA+U and GGA+U on my results given in this paper.  相似文献   

11.
The ground-state properties of NiO have been investigated using the all-electron full-potential linearized augmented plane wave (FLAPW) and the so-called LSDA (GGA)+U (LSDA—local-spin-density approximation; GGA—generalized gradient approximation) method. The calculated result indicates that our estimation of U is in good agreement with experimental data. It is also found that none of the LSDA (GGA) methods is able to provide, at the same time, accurate electronic and structural properties of NiO. Although the GGA+U method can properly predict the electronic band gap, it overestimates the lattice constant and underestimates the bulk modulus. Then only the LSDA+U method accurately reports the electronic and structural properties of NiO. The calculated band gap and the density of states (DOS) show that the material NiO is the charge-transfer insulator, which agrees with the spectroscopy data. The comparison between the charge density of LSDA (not considering U) and that of LSDA+U (considering U) demonstrates that the trend of ionic crystal for NiO is obvious.  相似文献   

12.
The electronic structure and magnetic properties of Fe2SiC compound have been studiedusing the framework of an all-electron full-potential linearized augmented-plane wave(FP-LAPW) method within the local density (LSDA) and + U corrected(LSDA + U)approximations. An antiferromagnetic spin ordering of Fe atoms is shown to be the groundstate for this compound. From the electronic band structures and density of states (DOS),Fe2SiC has ametallic character and from the analysis of the site and momentum projected densities, itis deduced that the bonding is achieved through hybridization of Fe-3d with C-2p states andFe-3d withSi-3pstates. It is also pointed out that the Fe-C bonding is more covalent than Fe-Si. In theFM phase, the spin polarized calculations indicate that the total magnetic moment ofFe2SiC increasesfrom 0.41 to 4.33μ B when the Hubbard U parameter for iron isconsidered.  相似文献   

13.
The electronic structures and magnetic properties of Zn- and Cd-doped SnO2 are investigated using first-principles calculations within the generalized gradient approximation (GGA) and GGA+U scheme. The substitutional Zn and Cd atoms introduce holes in the 2p orbitals of the O atoms and the introduced holes are mostly confined to the minority-spin states. The magnetic moment induced by doping mainly comes from the 2p orbitals of the O atoms, among which the moment of the first neighboring O atoms around the dopant are the biggest. The U correction for the anion-2p states obviously increases the moment of the first neighboring O atoms and transforms the ground states of the doped SnO2 from half-metallic to insulating. The magnetic coupling between the moments induced by two dopants is ferromagnetic and the origin of ferromagnetic coupling can be attributed to the p–d hybridization interaction involving holes.  相似文献   

14.
Electronic structure and magnetic properties of perovskite EuZrO3 have been investigated using the ab initio density-functional calculations with local spin density approximation (LSDA) and LSDA+U methods. The results that are obtained reveal that the antiferromagnetic G-type arrangement is more stable than other possible configurations. The ground G-AFM state shows the insulator property with an energy gap of about 0.27 eV at U=0 eV. It is found that the energy gap strongly depends on the correction potential parameter of U due to the strong interaction of the f electrons of Eu in EuZrO3. The spin magnetic moment of Eu ions is predited to be 6.82μB, which is in well agreement with the experimental result of 6.87μB.  相似文献   

15.
Electronic structure calculations were performed for substitutional erbium rare-earth impurity in cubic GaN using density-functional theory calculations within the LSDA+U approach (local spin-density approximation with Hubbard-U corrections). The LSDA+U method is applied to the rare-earth 4f states. The ErxGa1−xN is found to be a semiconductor, where the filled f-states are located in the valence bands and the empty ones above the conduction band edge. The filled and empty f-states are also shown to shift downwards and upwards in the valence and conduction bands, respectively, with increase in the U potentials.  相似文献   

16.
Gd2Co2Al电子结构和磁性的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张加宏  刘甦  顾芳  杨丽娟  刘楣 《物理学报》2006,55(6):2928-2935
从第一性原理出发,在局域自旋密度近似(LSDA)和LSDA+U(在位库仑能)近似下,采用FPLAPW密度泛函能带计算方法研究了Gd2Co2Al的电子结构和磁性. 从平均场近似出发,估算了体系的居里温度,并分析了导致体系居里温度偏低的原因.研究结果显示Gd2Co2Al为金属导体,其强的铁磁性的提供者主要是Gd,且Co的局域铁磁性是不稳定的. 基于LSDA近似的计算表明Gd2Co2关键词: 稀土过渡族金属间化合物 密度泛函理论 电子结构 磁性性质  相似文献   

17.
We perform a first principle calculation on NiO system, a prototypical correlated electronic system due to partial filled 3d electronic shell, using various density functional theory (DFT) and hybrid functional methods inclusion of spin polarization (SP), on-site Coulomb repulsion U and spin–orbit coupling (SOC) effects. It is shown that localized spin density approximation (LSDA) plus U (LSDA?+?U) correctly reproduce experimental lattice parameter, while spin polarization generalized gradient approximation (SP?+?GGA?+?U) obviously overestimates lattice parameter. LSDA?+?U/SP?+?GGA?+?U band gaps and magnetic moments are in agreement with experimental data, and correctly predict NiO to be an insulator. NiO undergoes a Mott–Hubbard metal–insulator transition (MIT) by addition of Coulomb interaction U. Our LSDA?+?SOC calculation shows that SOC further splitting of Ni d eg and t2g orbitals into dz2, dxy, dx2y2 and dxz?+?dyz orbitals, and SP nearly cancels out SOC effect, giving rise to symmetry of density of states (DOS) for spin-up and spin-down states, hence appearance of zero net magnetic moment. For LSDA?+?U?+?SOC calculation, combination effect of SP, U and SOC results in non-occupying of spin-up conduction band and a negligible density of states for spin-down states.  相似文献   

18.
Lin Zhu  Taimin Cheng 《Physics letters. A》2010,374(29):2972-2979
Generalized gradient approximation (GGA) and GGA + U (U denotes on-site Coulomb interactions) methods are applied to investigate the magnetic and electronic structures of the perovskite oxide Nd2/3Sr1/3MnO3. Under GGA the compound prefers ferrimagnetic ordering in which Nd sublattice is spin-antiparallel to Mn sublattice. Nd 4f states cross over the Fermi level under GGA, leading the ferrimagnetic Nd2/3Sr1/3MnO3 to a metallic character. The on-site Coulomb interactions should be included to emphasize the localized feature of Nd 4f states. Under GGA + U, the spins of Nd and Mn sublattices tend to be parallel in the ground state, and fully spin-polarized Mn 3d electrons yield a half-metallic band structure for the ferromagnetic Nd2/3Sr1/3MnO3. The ferromagnetic coupling between Nd and Mn sublattices is ascribed to the super-exchange interaction between Nd 4f and Mn 3d (t2g) electrons via O 2p electrons.  相似文献   

19.
The structural properties, elastic properties and electronic structures of hexagonal Al3RE intermetallic compounds are calculated by using first-principles calculations based on density functional theory. Since there exists strong on-site Coulomb repulsion between the highly localized 4f electrons of RE atoms, we present a combination of the GGA and the LSDA+U approaches in order to obtain the appropriate results. The GGA calculated lattice constants for the hexagonal Al3RE intermetallic compounds are in good agreement with available experimental values. The results of cohesive energy indicate that these compounds can be stable under absolute zero Kelvin and the stability of Al3Gd is the strongest in all of the hexagonal Al3RE compounds. The densities of states for GGA and LSDA+U approaches are also obtained for the Al3RE intermetallic compounds. The mechanical properties are calculated from the GGA method in this paper. According to the computed single crystal elastic constants, Al3La, Al3Sm and Al3Gd are mechanically unstable, while Al3Ce, Al3Pr and Al3Nd are stable. The polycrystalline elastic modulus and Poisson’s ratio have been deduced by using Voigt-Reuss-Hill (VRH) approximations, and the calculated ratio of bulk modulus to shear modulus indicates that Al3La compound is ductile material, but Al3Ce, Al3Pr, Al3Nd, Al3Sm and Al3Gd are brittle materials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号