首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the Bogoliubov de Gennes (BdG) equations, we study the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) states for d-wave superconductor in anisotropic triangular system self-consistently with a strong magnetic field applied parallel to its conducting planes. We find that the two-dimensional FFLO state transforms to one-dimensional FFLO state as the system frustrated. The calculated local density of states are suggested to distinguish these states.  相似文献   

2.
《中国物理 B》2021,30(10):100305-100305
We study the possibility of stabilizing a Fulde–Ferrell–Larkin–Ovchinnikov(FFLO) state in an equally populated two-component Fermi gas trapped in a moving two-dimensional optical lattice. For a system with nearly half filling, we find that a finite pairing momentum perpendicular to the moving direction can be spontaneously induced for a proper choice of lattice velocity. As a result, the total pairing momentum is tilted towards the nesting vector to take advantage of the significant enhancement of the density of states.  相似文献   

3.
The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) states, characterized by Cooper pairs condensed at finite-momentum are, at the same time, exotic and elusive. It is partially due to the fact that the FFLO states allow superconductivity to survive even in strong magnetic fields at the mean-field level. The effects of induced interactions at zero temperature are calculated in both clean and dirty cases, and it is found that the critical field at which the quantum phase transition to an FFLO state occurs at the mean-field level is strongly suppressed in imbalanced Fermi gases. This strongly shrinks the phase space region where the FFLO state is unstable and more exotic ground state is to be found. In the presence of high level impurities, this shrinkage may destroy the FFLO state completely.  相似文献   

4.
Plastovets  V. D.  Vodolazov  D. Yu. 《JETP Letters》2019,109(11):729-735
JETP Letters - The mechanism of switching between different states of a quasi-one-dimensional current-carrying superconductor in the Fulde–Ferrell phase has been theoretically studied. It has...  相似文献   

5.
6.
We theoretically investigate a three-dimensional Fermi gas with Rashba spin–orbit coupling in the presence of both out-of-plane and in-plane Zeeman fields. We show that, driven by a sufficiently large Zeeman field, either out-of-plane or in-plane, the superfluid phase of this system exhibits a number of interesting features, including inhomogeneous Fulde–Ferrell pairing, gapped or gapless topological order, and exotic quasi-particle excitations known as Weyl fermions that have linear energy dispersions in momentum space(i.e., massless Dirac fermions). The topological superfluid phase can have either four or two topologically protected Weyl nodes. We present the phase diagrams at both zero and finite temperatures and discuss the possibility of their observation in an atomic Fermi gas with synthetic spin–orbit coupling. In this context,topological superfluid phase with an imperfect Rashba spin–orbit coupling is also studied.  相似文献   

7.
8.
It is shown that Friedmann–Robertson–Walker (FRW) cosmological models coupled to a single scalar field and to a perfect fluid fitting a wide class of matter perfect fluid state equations, determined in (3+1) dimensional gravity can be related to their (2+1) cosmological counterparts, and vice-versa, by using simple algebraic rules relating gravitational constants, state parameters, perfect fluid and scalar field characteristics. It should be pointed out that the demonstration of these relations for the scalar fields and potentials does not require the fulfilment of any state equation for the scalar field energy density and pressure. As far as to the perfect fluid is concerned, one has to demand the fulfilment of state equations of the form p+ = f(). If the considered cosmologies contain the inflation field alone, then any (3+1) scalar field cosmology possesses a (2+1) counterpart, and vice-versa. Various families of solutions are derived, and we exhibited their correspondence; for instance, solutions for pure matter perfect fluids and single scalar field fulfilling linear state equations, solutions for scalar fields coupled to matter perfect fluids, a general class of solutions for scalar fields subjected to a state equation of the form p + = are reported, in particular Barrow–Saich, and Barrow–Burd–Lancaster–Madsen solutions are exhibited explicitly, and finally perfect fluid solutions for polytropic state equations are given.  相似文献   

9.
The trajectory of the first excited Efimov state is investigated by using a renormalized zero-range three-body model for a system with two bound and one virtual two-body subsystems. The approach is applied to nn18C, where the n–nnn virtual energy and the three-body ground state are kept fixed. It is shown that such three-body excited state goes from a bound to a virtual state when the n18C binding energy is increased. Results obtained for the n19C elastic cross-section at low energies also show dominance of an S-matrix pole corresponding to a bound or virtual Efimov state. It is also presented a brief discussion of these findings in the context of ultracold atom physics with tunable scattering lengths.  相似文献   

10.
Akio Suzuki 《高压研究》2017,37(2):193-199
ABSTRACT

The pressure–volume–temperature (PVT) equation of state (EoS) of natural goethite (α-FeOOH) has been determined by an X-ray diffraction study using synchrotron radiation. Fitting the volume data to the third-order Birch–Murnaghan EoS yielded an isothermal bulk modulus, B0 of 85.9(15)?GPa, and a pressure derivative of the bulk modulus, B′, of 12.6(8). The temperature derivative of the bulk modulus, (?B/?T)P, was –0.022(9)?GPa?K?1. The thermal expansion coefficient α0 was determined to be 4.0(5)?×?10?5?K?1.  相似文献   

11.
null 《中国物理C(英文版)》2016,40(9):093101-093101
Very recently, the D0 collaboration has reported the observation of a narrow structure, X(5568), in the decay process X(5568)→ B_s~0π±using the 10.4fb~(-1) data of pp collision at 8~(1/2) = 1.96 TeV. This structure is of great interest since it is the first hadronic state with four different valence quark flavors, b, s, u, d. In this work,we investigate tetraquarks with four different quark flavors. Based on the diquark-antidiquark scheme, we study the spectroscopy of the tetraquarks with one heavy bottom/charm quark and three light quarks. We find that the lowest-lying S-wave state, a tetraquark with the flavor [su][bd] and the spin-parity JP= 0~+, is about 150 MeV higher than the X(5568). Further detailed experimental and theoretical studies of the spectrum, production and decays of tetraquark states with four different flavors are vital to gain a better understanding of the nature and classification of hadron exotic states.  相似文献   

12.
13.
We discuss the relationship between entropic Einstein–Podolsky–Rosen (EPR)-steering inequalities and their underlying uncertainty relations along with the hypothesis that improved uncertainty relations lead to tighter EPR-steering inequalities. In particular, we discuss how using information about the state of a quantum system affects one?s ability to witness EPR-steering. As an example, we consider the recent improvement to the entropic uncertainty relation between pairs of discrete observables (Berta et al., 2010 [10]). By considering the assumptions that enter into the development of a steering inequality, we derive correct steering inequalities from these improved uncertainty relations and find that they are identical to ones already developed (Schneeloch et al., 2013 [9]). In addition, we consider how one can use state information to improve our ability to witness EPR-steering, and develop a new continuous variable symmetric EPR-steering inequality as a result.  相似文献   

14.
Akio Suzuki 《高压研究》2018,38(2):145-152
A high pressure X-ray diffraction study of RhOOH was carried out up to 17.44?GPa to investigate the compression behavior of an oxyhydroxide with an InOOH-related structure. A fit to the third-order Birch–Murnaghan equation of state gave K0?=?208?±?6?GPa, and K′?=?9.4?±?1.3. The temperature derivative of the bulk modulus was found to be ?K/?T?=??0.06?±?0.02?GPa K?1. The refined parameters for volume thermal expansion were α0?=?2.7?±?0.3?×?10?5 K?1; α1?=?1.7?±?1.1?×?10?8 K?2 in the polynomial form (α(T)?=?α0?+?α1(T?300)). Our results show that RhOOH is very incompressible, and has a higher bulk modulus than other InOOH-structured oxyhydroxides (e.g. δ-AlOOH, ε-FeOOH, and γ-MnOOH).  相似文献   

15.
We propose an efficient scheme for the generation of three-photon Greenberger–Horne–Zeilinger (GHZ) state with linear optics, nonlinear optics and postselection. Several devices are designed and a two-mode quantum nondemolition detection is introduced to obtain the desired state. It is worth noting that the states which have entanglement in both polarization and spatial degrees of freedom are created in one of the designed setups. The method described in the present scheme can create a large number of three-photon GHZ states in principle. We also discuss an approach to generate the desired GHZ state in the presence of channel noise.  相似文献   

16.
The static and dynamic magnetic properties of a Prussian blue analogue, molecular magnet Cu^Ⅱ_{3}[Fe^Ⅲ(CN)_6]_2·3NH_3·6H_2O were investigated in detail. The H dependence of the linear AC susceptibility, the irreversibility in the field-cooled (FC)/zero-field-cooled (ZFC) magnetization (M_{FC}/M_{ZFC}) and the relaxation of M_{ZFC} suggest that the magnetic system can be visualized as containing a ferromagnetic cluster of spin below T_C, mixed with small spin-glass clusters formed below temperature T_g less than T_C. The observed magnetic properties are explained with a ferromagnetic-spin-glass phase model. The magnetic ordering of the sample occurs below 19.8K.  相似文献   

17.
18.
Refait  Ph.  Drissi  S.  Abdelmoula  M.  Génin  J.-M. R. 《Hyperfine Interactions》2002,139(1-4):651-655
Green rust-like compounds (GRs) were discovered as natural minerals in various hydromorphic soils, where anoxic conditions allow their stability. They may control some redox processes in aquifers and participate to the transformation of various pollutants. Since Mg(II) cations are present in the fields where GRs were discovered, a partial substitution of Mg(II) to Fe(II) leading to intermediate compounds between GRs and usual Mg(II)–Fe(III) hydroxysalts is suspected. Mg(II)–Fe(II)–Fe(II) hydroxycarbonates can be obtained as intermediate oxidation products of (Mg, Fe)(OH)2 in carbonate-containing aqueous media obeying to [FeII 4(1–x)MgII 4x FeIII 2(OH)12]2+ [CO3 2– nH2O]–2. TMS spectra at 12 K are similar to those of GRs, i.e., two quadrupole doublets, one due to Fe(II) with a large isomer shift =1.29 mms–1 (with respect to -iron at room temperature) and quadrupole splitting E Q=2.76 mms–1, the other one due to Fe(III) with smaller hyperfine parameters =0.49 mms–1 and E Q=0.44 mms–1. Fe(II) ions oxidise rapidly into Fe(III) with dissolved O2. The reactivity is similar to that of Fe(II)–Fe(III) hydroxysalts GR, and thus the potential of Mg(II)–Fe(II)–Fe(III) compounds for reducing pollutants.  相似文献   

19.
We study long-time asymptotic states of periodically driven quantum systems coupled to a thermal bath. In order to describe a class of such a system, we introduce the Floquet–Gibbs state, i.e. the state whose density matrix is diagonalized in the basis of the Floquet state of the system Hamiltonian, and its diagonal element obeys the Boltzmann distribution over its Floquet quasienergy. We obtain sufficient conditions for the realization of the Floquet–Gibbs state in a system with infinitesimal system-bath coupling [T. Shirai et al., Phys. Rev. E 91, 030101 (2015)]. These conditions severely restrict a class of suitable physical models attaining the Floquet–Gibbs state. We also show that some of the conditions can be lifted by imposing conditions on timescales of the thermal bath with the aid of the truncated Floquet Hamiltonian in the Floquet–Magnus expansion [T. Shirai et al., New J. Phys. 18, 053008 (2016)]. In this paper, we give an overview of this theory and reconsider it by looking at the dynamics from a rotating frame.  相似文献   

20.
All existing experimental evidence for the bound state nature of X(3872) relies on observing its decay products,which are measured with a finite experimental mass resolution that is typically △m≥2 MeV,and much larger than its alleged binding energy,B_X=0.00(18) MeV.On the other hand,we have found recently that there is a clear cancellation in the 1~(++) channel of the invariant DD~*mass around the threshold between continuum and the bound state.This is very much like a similar cancellation in the proton-neutron continuum with the deuteron in the1~(++) channel.Based on comparative fits with a common Tsallis distribution of the experimental cross-sections for prompt production of deuterons and X(3872) in pp collisions with a finite p_T,we find a strong argument for questioning the bound state nature of this state,which also suggests that the large observed production rate could be consistent with a half-bound state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号