首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have carried out Mössbauer spectroscopy and nuclear resonant inelastic scattering to elucidate the lattice dynamics in filled-Skutterudite compounds, especially phosphides. The second-order Doppler shift obeys the Debye model in RFe4P12. Nuclear quadrupole interaction reveals an unusual temperature dependence in these compounds. An anomaly is observed in 57Fe nuclear resonant inelastic scattering of these compounds. The energy where the anomaly observed in SmFe4P12 agrees with the phonon excitation energy observed by 149Sm nuclear resonant inelastic scattering. We have also performed the 99Ru Mössbauer measurements of SmRu4P12.  相似文献   

2.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

3.
The thermal conductivity and the heat capacity of a single crystal of bismuth orthogermanate Bi4Ge3O12 have been experimentally investigated in the temperature ranges 50–300 and 56–300 K, respectively. The temperature dependences of the phonon mean free path, the characteristic Debye temperature, and the changes in the entropy and enthalpy have been calculated.  相似文献   

4.
In this paper we report the results obtained from inelastic neutron scattering measurements on Zr2NiH1.9 and Zr2NiH4.6 using triple-axis spectrometer at Dhruva reactor, Trombay. The spectrum up to 35 meV represents largely the lattice modes of Zr and Ni atoms. The vibrational frequencies of hydrogen atoms are expected predominantly at higher energies. The phonon spectra from 35–180 meV were recorded using a Be filter as analyser. In order to analyse the observed neutron spectra, we assume a set of Ein-stein modes due to the hydrogen atoms which are delta functions in energy. These delta functions are broadened by the resolution of the instrument. The vibrational frequencies obtained from the fitting of the observed phonon spectra have been assigned to various tetrahedral sites in both the compounds.  相似文献   

5.
The specific heats of the amorphous systems Ni44Nb56, Ni62Nb38, and Cu33Zr67 were studied in the temperature range 3–273 K. The data obtained allow one to isolate the contribution due to atomic vibrations from the experimentally measured specific heat, to determine the density of electronic states at the Fermi level and the temperature dependence of the characteristic Debye parameter Θ over a broad temperature range, and to calculate a few frequency moments that characterize the vibrational spectrum. The information derived on the average characteristics of vibrational spectra is in good agreement with earlier data on inelastic neutron scattering. In transferring from Ni44Nb56 to Ni62Nb38, the density of electronic states at the Fermi level decreases and the characteristic vibrational frequencies increase. The density of electronic states at the Fermi level for Cu33Zr67 is close to that for Ni62Nb38. The characteristic frequencies of the vibrational spectrum of the Cu33Zr67 system are substantially lower (by 30%) than those of the Ni44Nb56 and Ni62Nb38 systems.  相似文献   

6.
NaFeGe2O6 polycrystals were synthesized and their x-ray diffraction, magnetic, electrical, and Mössbauer characteristics were measured. It is established that this monoclinic compound is a dielectric with a temperature of antiferromagnetic ordering of 15 K. The Mössbauer spectrum at 300 K is a quadrupole doublet. The isomer shift is 0.40 mm/s, which is characteristic of the high-spin Fe3+ ion in the octahedral coordination. The quadrupole splitting is 0.34 mm/s, which indicates that the oxygen octahedron around the iron cation is distorted. The exchange interactions are estimated, and the crystal magnetic structure is discussed.  相似文献   

7.
The magnetic susceptibility and specific heat of single crystals of the Ba2Fe2GeO7 barium ferrigermanate are investigated. It is revealed that the temperature dependence of the magnetic susceptibility exhibits a kink at a temperature T = 8.5 K. The number of nonequivalent positions of Fe3+ ions and their occupancies are determined using Mössbauer spectroscopy. It is shown that the Fe3+ ions located in tetrahedral positions T2 are ordered incompletely, which is inconsistent with the results obtained previously. An assumption is made regarding the possible ground magnetic state of the Ba2Fe2GeO7 compound.  相似文献   

8.
“Zero field”-Mössbauer and magnetization measurements have been performed on an amorphous Fe76Mo8Cu1B15 alloy in the temperature range of (10-340) K. The room-temperature Mössbauer spectrum exhibits magnetic dipole and electric quadrupole interactions. At approximately 306 K, the magnetic interactions vanish and the alloy shows fully paramagnetic behavior. On the other hand, the relative representation of paramagnetic component becomes weak with decreasing temperature and below 220 K the magnetic dipole interactions prevail. Below this temperature an anomaly in the low-temperature dependencies of ac susceptibility and of magnetization, measured during cooling the specimen from 340 K down to 20 K is observed. The anomaly on the magnetization curve vanishes in the field of 200 Oe.  相似文献   

9.
Single-phase rhombohedral perovskites (Bi0.9Sr0.1)FeO3 were studied by Mössbauer spectroscopy at temperatures of 293, 87, and 680 K. The Neel temperature T N = 652 ± 2 K of the magnetic transition was measured. Three states of trivalent iron ions in the octahedral states were discovered. Substitution of Sr2+ for 0.1 mol % Bi3+ breaks the spatially spin-modulated structure.  相似文献   

10.
NaNbO3 and (Sr,Ca)TiO3 exhibit an unusual complex sequence of temperature- and pressure-driven structural phase transitions. We have carried out lattice dynamical studies to understand the phonon modes responsible for these phase transitions. Inelastic neutron scattering measurements using powder samples were carried out at the Dhruva reactor, which provide the phonon density of states. Lattice dynamical models have been developed for SrTiO3 and CaTiO3 which have been fruitfully employed to study the phonon spectra and vibrational properties of the solid solution (Sr,Ca)TiO3.   相似文献   

11.
The variation of electronic density in the superconducting phase transition in the classical superconductor Nb3Al with critical temperature Tc=18.6 K was studied using 73Ge emission Mössbauer spectroscopy. A comparison of the results obtained and the data available for the 67Zn isotope in the lattices of high-temperature superconductors revealed a correlation between the electronic density variation at the Mössbauer probe nuclei sites and the value of Tc. This correlation is assumed to be related to the dependence of the electronic density variation on the standard correlation length.  相似文献   

12.
57Fe Mössbauer spectroscopy has been used to study some liquid crystalline disubstituted derivatives of ferrocene (FLCn). The characteristic Debye temperatures for these compounds were found to be in the range of 25–31 K. The order parameters, and intramolecular- and lattice-contributions to the nuclear vibrational anisotropy have been obtained from the analysis of the angular dependence of the Mössbauer parameters.  相似文献   

13.
Raman scattering measurements were performed on CeO2 nanoparticles at room temperature. Low-frequency modes are assigned to confined acoustic vibrations of spherical CeO2 nanoparticles. Frequencies of these vibrational modes have been calculated in the elastic continuum approximation, which considers a nanoparticle as a homogeneous elastic sphere. We assumed stress-free boundary conditions. The specific dependence of the vibrational frequency on the particle diameter enables the determination of the particle size from the experimental Raman frequency. The particle size value calculated in this way agrees well with the value acquired from the phonon confinement model. PACS 61.46.Df; 73.63.Bd; 63.22.+m  相似文献   

14.
Thermoelectric power and electrical resistivity measurements on polycrystalline samples of Bi2Se3 and stoichiometric ternary compound in the quasi-binary system SnSe–Bi2Se3 in the temperature range of 90–420 K are presented and explained assuming the existence of an impurity band. The variation of the electron concentration with temperature above 300 K is explained in terms of the thermal activation of a shallow donor, by using a single conduction band model. The density of states effective mass m *=0.15m 0 of the electrons, the activation energy of the donors, their concentration, and the compensation ratio are estimated. The temperature dependence of the electron mobility in conduction band is analyzed by taking into account the scattering of the charge carriers by acoustic phonon, optical phonon, and polar optical phonon as well as by alloy and ionized impurity modes. On the other hand, by considering the two-band model with electrons in both the conduction and impurity bands, the change in the electrical resistivity with temperature between 420 and 90 K is explained.  相似文献   

15.
Temperature dependent119Sn Mössbauer effect measurements on AuSn4, PdSn4, and PtSn4 compounds in the temperature range of 10 to 295 K shows the presence of a Sn4+ site. Variation of thermal shift and the Debye-Waller factor shows that the mean-squared displacement (lnf) and mean-squared velocity (δ) of the tin nuclei are both characterized by a Debye temperature of 238, 255, and 304 K in AuSn4, PdSn4, and PtSn4, respectively. No discernible evidence of a phonon mediated structural transition is observed in the temperature range studied.  相似文献   

16.
The spectra of complex permittivity of a Ba2Mg2Fe12O22 single crystal belonging to the family of Y-type hexaferrites have been measured over a wide temperature range (10–300 K) with the aim of determining the dynamic parameters of the phonon and magnetic subsystems in the terahertz and infrared frequency ranges (3–4500 cm−1). A factor-group analysis of the vibrational modes has been performed, and the results obtained have been compared with the experimentally observed resonances. The oscillator parameters of all nineteen phonon modes of E u symmetry, which are allowed by the symmetry of the Ba2Mg2Fe12O22 crystal lattice, have been calculated. It has been found that, at temperatures below 195 and 50 K, the spectral response exhibits new absorption lines due to magnetic excitations.  相似文献   

17.
Single-phase polycrystalline La0.75Sr0.25Co0.9857Fe0.02O3 samples have been prepared by solidstate ceramic technology. The samples have the rhombohedral structure (space group \(R\bar 3c\)). The studies of perovskite La0.75Sr0.25Co0.9857Fe0.02O3 by Mössbauer spectroscopy on impurity 57Fe nuclei in the temperature range of 5–293 K have revealed the existence of a superparamagnetic relaxation in the temperature range of 100–210 K. The parameters of hyperfine interactions (hyperfine magnetic fields, line shifts, and quadrupole shifts) and the anisotropy energy have been measured, and the frequencies of magnetic moment relaxation of iron ions have been estimated.  相似文献   

18.
The short-range order around boron, aluminum, and iron atoms in Fe75B25 and Fe70Al5B25 amorphous alloys has been studied by 11B and 27Al nuclear magnetic resonance at 4.2 K and 57Fe Mössbauer spectroscopy at 87 and 295 K. The average magnetic moment of iron atoms μ(Fe) in these alloys has been measured by a vibrating sample magnetometer. It has been revealed that the substitution of aluminum atoms for iron atoms does not disturb μ(Fe) in the Fe70Al5B25 alloy, gives rise to an additional contribution to the 11B NMR spectrum in the low-frequency range, and shifts maxima of the distribution of hyperfine fields at the 57Fe nuclei. In the Fe70Al5B25 amorphous alloy, the aluminum atoms substitute for iron atoms in the nearest coordination shells of boron and iron atoms. This alloy consists of nanoclusters in which boron and iron atoms have a short-range order of the tetragonal Fe3B phase type.  相似文献   

19.
The electron structure impurity nuclei 151Eu of Ga2Se3 defect compounds have been investigated by electron spin resonance and Mössbauer spectroscopy at temperatures between 77 and 300 K. Mössbauer spectra in samples were recorded at MS 700 M set up with Sm2O3 as the sources and isomer shift values were determined relative to EuF3. The microscopic properties of Ga2Se3:EuSe single crystals defect compounds have been studied by atomic absorption analysis and X-ray fluorescence analysis at room temperature. The temperature dependence of the magnetic hyperfine fields was also analyzed by using the spin-wave theory and the molecular-field model. We determined the Debye temperature ΘD and the charge states for 151Eu which turned out to be Eu2+(f7) ion with spin 7/2.  相似文献   

20.
Phonons in a metal interact with conduction electrons which give rise to a finite linewidth. In the normal state, this leads to a Lorentzian shape of the phonon line. Density functional theory is able to predict the phonon linewidths as a function of wave vector for each branch of the phonon dispersion. An experimental verification of such predictions is feasible only for compounds with very strong electron-phonon coupling. YN2B2C was chosen as a test example because it is a conventional superconductor with a fairly high T c (15.2 K). Inelastic neutron scattering experiments did largely confirm the theoretical predictions. Moreover, they revealed a strong temperature dependence of the linewidths of some phonons with particularly strong electron-phonon coupling which can as yet only qualitatively be accounted for by theory. For such phonons, marked changes of the phonon frequencies and linewidths were observed from room temperature down to 15 K. Further changes were observed on entering into the superconducting state. These changes can, however, not be described simply by a change of the phonon linewidth.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号