首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We investigate the migration pathway and barrier for B diffusion at SiGe/SiO2 interface through first-principles density functional calculations. Similar to the diffusion mechanism reported for Si/SiO2 interface, a substitutional B, which initially forms a B-self-interstitial complex in SiGe, diffuses to the interface and then to the oxide in form of an interstitial B. At the defect-free interface, where bridging O atoms are inserted to remove interface dangling bonds, it is energetically more favorable for the interstitial B to intervene in the Ge–O bridge bond rather than the Si–O bridge bond at the interface. As a result of the B intervention, interface Ge atoms significantly enhance the stability of B-related defects in the interface region and thereby act as traps for B dopants. At the interface with the Ge–O bridge bond, the overall migration barrier for B diffusion from SiGe to SiO2 is estimated to be about 3.7 eV, much higher than the reported value of about 2.1 eV at Si/SiO2 interface. Our results provide a clue to understanding the experimental observation that B segregation toward the oxide is suppressed in SiGe/SiO2 interface.  相似文献   

2.
We have studied the segregation of P and B impurities during oxidation of the Si(1 0 0) surface by means of combined static and dynamical first-principles simulations based on density functional theory. In the bare surface, dopants segregate to chemically stable surface sites or to locally compressed subsurface sites. Surface oxidation is accompanied by development of tensile surface stress up to 2.9 Nm−1 at a coverage of 1.5 monolayers of oxygen and by formation of oxidised Si species with charges increasing approximately linearly with the number of neighbouring oxygen atoms. Substitutional P and B defects are energetically unstable within the native oxide layer, and are preferentially located at or beneath the Si/SiOx interface. Consistently, first-principles molecular dynamics simulations of native oxide formation on doped surfaces reveal that dopants avoid the formation of P-O and B-O bonds, suggesting a surface oxidation mechanism whereby impurities remain trapped at the Si/SiOx interface. This seems to preclude a direct influence of impurities on the surface electrostatics and, hence, on the interactions with an external environment.  相似文献   

3.
As a result of considerable progress in microfabrication technology for ultra-large scale integration (ULSI), it has become necessary to control oxide formation on an atomic scale in order to produce defect-free SiO2/Si interfaces. However, the possibility of forming an atomically flat interface by oxidizing an atomically flat silicon surface without introducing structural defects is not yet clarified. In this article the present understanding of chemical structures of SiO2/Si interfaces and initial stage of oxidation of silicon surfaces are reviewed.  相似文献   

4.
We report on continuous-wave laser induced crystallisation processes occurring in Si/SiO2 multiple quantum wells (MQW), prepared by remote plasma enhanced chemical vapour deposition of amorphous Si and SiO2 layers on quartz substrates. The size and the volume fraction of the Si nanocrystals in the layers were estimated employing micro-Raman spectroscopy. It was found that several processes occur in the Si/SiO2 MQW system upon laser treatment, i.e. amorphous to nanocrystalline conversion, Si oxidation and dissolution of the nanocrystals. The speed of these processes depends on laser power density and the wavelength, as well as on the thickness of Si-rich layers. At optimal laser annealing conditions, it was possible to achieve ∼100% crystallinity for 3, 5 and 10 nm thickness of deposited amorphous Si layers. Crystallization induced variation of the light absorption in the layers can explain the complicated process of Si nanocrystals formation during the laser treatment.  相似文献   

5.
郑玉龙  甄聪棉  马丽  李秀玲  潘成福  侯登录 《物理学报》2011,60(11):117502-117502
在Si-Al2O3复合薄膜中观察到室温铁磁性.Si的体积百分比为15 %的Si-Al2O3复合薄膜的磁性最强.Si的含量影响样品的磁有序,在样品中观察到了明显的磁畴.在不同气氛下,对样品进行快速热退火.退火样品的磁性测试结果的差别表明氧空位不是样品铁磁性的主要来源.我们认为铁磁性来源于Si与Al2O3基质界面之间的缺陷的磁耦合.改变Si的含量可以改变缺陷密度,从而控制铁磁耦合强度. 关键词: 2O3薄膜')" href="#">Al2O3薄膜 室温铁磁性 掺杂 交换相互作用  相似文献   

6.
The reduction of complementary metal oxide semiconductor dimensions through transistor scaling is in part limited by the SiO2 dielectric layer thickness. Among the materials evaluated as alternative gate dielectrics one of the leading candidate is La2O3 due to its high permittivity and thermodynamic stability. However, during device processing, thermal annealing can promote deleterious interactions between the silicon substrate and the high-k dielectric degrading the desired oxide insulating properties.The possibility to grow poly-SiGe on top of La2O3//Si by laser assisted techniques therefore seems to be very attractive. Low thermal budget techniques such as pulsed laser deposition and crystallization can be a good choice to reduce possible interface modifications due to their localized and limited thermal effect.In this work the laser annealing by ArF excimer laser irradiation of amorphous SiGe grown on La2O3//Si has been analysed theoretically by a numerical model based on the heat conduction differential equation with the aim to control possible modifications at the La2O3//Si interface. Simulations have been carried out using different laser energy densities (0.26-0.58 J/cm2), different La2O3 film thickness (5-20 nm) and a 50 nm, 30 nm thick amorphous SiGe layer. The temperature distributions have been studied in both the two films and substrate, the melting depth and interfaces temperature have been evaluated. The fluences ranges for which the interfaces start to melt have been calculated for the different configurations.Thermal profiles and interfaces melting point have shown to be sensitive to the thickness of the La2O3 film, the thicker the film the lower the temperature at Si interface.Good agreement between theoretical and preliminary experimental data has been found.According to our results the oxide degradation is not expected during the laser crystallization of amorphous Si0.7Ge0.3 for the examined ranges of film thickness and fluences.  相似文献   

7.
Silicon is by far the most important material used in microelectronics, partly due to the excellent electronic properties of its native oxide (SiO2), but substitute semiconductors are constantly the matter of research. SiC is one of the most promising candidates, also because of the formation of SiO2 as native oxide. However, the SiO2/SiC interface has very poor electrical properties due to a very high density of interface states which reduce its functionality in MIS devices. We have studied the electronic properties of defects in the SiO2/Si and SiO2/SiC interfaces by means of XAS, XPS and resonant photoemission at the O 1s and the Si 2p edges, using silicon dioxide thermally grown with thicknesses below 10 nm. Our XAS data are in perfect agreement with literature; in addition, resonant photoemission reveals the resonant contributions of the individual valence states. For the main peaks in the valence band we find accordance between the resonant behaviour and the absorption spectra, except for the peaks at −15 eV binding energy, whose resonant photoemission spectra have extra features. One of them is present in both interfaces and is due to similar defects, while another one at lower photon energy is present only for the SiO2/SiC interface. This is related to a defect state which is not present at the SiO2/Si interface.  相似文献   

8.
Thermal stability, interfacial structures and electrical properties of amorphous (La2O3)0.5(SiO2)0.5 (LSO) films deposited by using pulsed laser deposition (PLD) on Si (1 0 0) and NH3 nitrided Si (1 0 0) substrates were comparatively investigated. The LSO films keep the amorphous state up to a high annealing temperature of 900 °C. HRTEM observations and XPS analyses showed that the surface nitridation of silicon wafer using NH3 can result in the formation of the passivation layer, which effectively suppresses the excessive growth of the interfacial layer between LSO film and silicon wafer after high-temperature annealing process. The Pt/LSO/nitrided Si capacitors annealed at high temperature exhibit smaller CET and EOT, a less flatband voltage shift, a negligible hysteresis loop, a smaller equivalent dielectric charge density, and a much lower gate leakage current density as compared with that of the Pt/LSO/Si capacitors without Si surface nitridation.  相似文献   

9.
When heated by high-energy electron beam (EB), SiC can decompose into C and Si vapor. Subsequently, Si vapor reacts with metal oxide thin film on substrate surface and formats dense SiO2 thin film at high substrate temperature. By means of the two reactions, SiC/SiO2 composite thin film was prepared on the pre-oxidized 316 stainless steel (SS) substrate by electron beam-physical vapor deposition (EB-PVD) only using β-SiC target at 1000 °C. The thin film was examined by energy dispersive spectroscopy (EDS), grazing incidence X-ray asymmetry diffraction (GIAXD), scanning electron microscopy (SEM), atomic force microscopy (AFM), backscattered electron image (BSE), electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infra-red (FT-IR) spectroscopy. The analysis results show that the thin film is mainly composed of imperfect nano-crystalline phases of 3C-SiC and SiO2, especially, SiO2 phase is nearly amorphous. Moreover, the smooth and dense thin film surface consists of nano-sized particles, and the interface between SiC/SiO2 composite thin film and SS substrate is perfect. At last, the emissivity of SS substrate is improved by the SiC/SiO2 composite thin film.  相似文献   

10.
Epitaxial 3C-SiC grains are formed at 1190 °C in the top region of silicon, when Si wafers coated by SiO2 are annealed in CO atmosphere. The formed SiC grains are 40-50 nm high and 100 nm wide in cross-section and contain only few defects. Main advantage of the method is that the final structure is free of voids.The above method is further developed for the generation of SiC nanocrystals, embedded in SiO2 on Si, and aligned parallel with the interface. The nanometer-sized SiC grains were grown into SiO2 close to the Si/SiO2 interface by a two-step annealing of oxide covered Si: first in a CO, than in a pure O2 atmosphere. The first (carbonization) step created epitaxial SiC crystallites grown into the Si surface, while the second (oxidation) step moved the interface beyond them. Conventional and high resolution cross-sectional electron microscopy showed pyramidal Si protrusions at the Si/SiO2 interface under the grains. The size of the grains, as well as their distance from the Si/SiO2 interface (peak of pyramids) can be controlled by the annealing process parameters. The process can be repeated and SiC nanocrystals (oriented in the same way) can be produced in a multilevel structure.  相似文献   

11.
In this report we present grazing incidence X-ray reflectivity (GIXR) study of SiO2/Si(0 0 1) system. We have analysed the X-ray reflectivity data using recursive formalism based on matrix method and distorted wave Born approximation (DWBA). From the analysis of the reflectivity data we could obtain the electron density profile (EDP) at the interface of the dielectric SiO2 film and the Si(0 0 1) substrate. The EDP obtained from the matrix method follows the DWBA scheme only when two transition layers are considered at the interface of SiO2/Si. The layer which is in proximity with the Si substrate has a higher electron density value than the Si and SiO2 values and it appears as a maximum in the EDP. The layer which is in proximity with the dielectric SiO2 layer has an electron density value lower than the SiO2 value and it appears as a minimum in the EDP. When the thickness of the SiO2 layer is increased the lower density layer diminishes and the higher density layer persists.  相似文献   

12.
We report room temperature visible photoluminescence (PL), detectable by the unaided eye, from colloidal suspension of silicon nanocrystals (nc-Si) prepared by mechanical milling followed by chemical oxidation. The PL bands for samples prepared from Si wafer and Si powder peak at 3.11 and 2.93 eV respectively, under UV excitation, and exhibit a very fast (~ns) PL decay. Invasive oxidation during chemical treatment reduces the size of the nc-Si domains distributed within the amorphous SiO2 matrix. It is proposed that defects at the interface between nc-Si and amorphous SiO2 act as the potential emission centers. The origin of blue–violet PL is discussed in relation to the oxide related surface states, non-stoichiometric suboxides, surface species and other defect related states.  相似文献   

13.
The impact of HfO:N post nitridation anneal (PNA) and gate fabrication on the physico-chemical properties of the TiN/HfO:N/SiO2/Si stack are investigated using Soft X-ray Photoelectron Spectroscopy (S-XPS) and Vacuum UltraViolet Spectroscopic Ellipsometry (VUV-SE). Defects created in the high-k during plasma nitridation are passivated by PNA under O2. Both oxygen and nitrogen diffusion is observed towards the bottom SiO2/Si interface together with a regrowth of the SiO2. These defects play a major role regarding nitrogen diffusion during gate fabrication. Without PNA, no diffusion is observed because O and N atoms are trapped inside the high-k. With PNA and simultaneous defects passivation, nitrogen from both metal gate and high-k diffuses towards the bottom SiO2/Si interface.  相似文献   

14.
The effect of annealing at 1520–1570 K under high pressure (HP, up to 1.2GPa) on the structure of SiO2 in oxygen implanted silicon (Si:O) and in silicon with buried SiO2 layer (SOI) was investigated by TEM, X-Ray and FTIR methods. Depending on the implantation and treatment parameters, SiO2 precipitates or continuous SiO2 layers, sometimes with defects at the SiO2/Si boundary, are created. A stress dependent shift of asymmetric stretching vibration mode associated with Si-O bonds towards lower frequencies is detected for SiO2 in the HT—HP treated Si:O and SOI samples.  相似文献   

15.
Fe3O4-based heterostructures, including Fe3O4/MgO/Fe3O4, Fe3O4/MgO/Si and Fe3O4/SiO2/Si, were fabricated by magnetron sputtering to investigate the perpendicular-to-plane magneto-transport properties. In the Fe3O4/MgO/Fe3O4 and Fe3O4/MgO/Si heterostructures, the typical magneto-transport properties of single Fe3O4 films, such as negative magnetoresistance (MR) and extreme values of MR−T curves at 120 K, were observed, suggesting that the spin polarization of conducting electrons conserves through MgO barrier. MR in the Fe3O4/MgO/Fe3O4 heterostructure is larger than that in the Fe3O4/MgO/Si heterostructure, because the spin of electrons is disturbed in the depletion layer of Si and the SiO2 layer introduced by Fe3O4/MgO growth. The Fe3O4/SiO2/Si heterostructure has a positive MR of 2% at 120 K, which may originate from the scattering of conducting electrons in amorphous SiO2 and the spin polarization reversal at the Fe3O4/SiO2 interface.  相似文献   

16.
We have studied luminescence properties and microstructure of 20 patterns Si/SiO2 multilayers. The photoluminescence spectra consist of two gaussian bands in the visible-infrared spectral region. It has been demonstrated that the strong PL band is caused by the radiative recombination in the Si/SiO2 interfaces states, whereas the weaker band originates from radiative recombination in the nanosized Si layers. The peak shift of this latter band shows a discontinuity that corresponds to a crystalline-to-amorphous phase change when the Si layers are thinner than 30 Å. The peak energy as a function of the layer thickness is interpreted using a quantum confinement model in the case of amorphous Si layers.  相似文献   

17.
The structure of nanocrystal-matrix interface and strain in embedded nanocrystals are studied using large-scale atomistic simulations, with the examples of Si nanocrystal embedded in amorphous matrix of SiO2. Photoluminescence from silicon nanocrystals embedded in a dielectric matrix like SiO2 and Si3N4 are promising for Si-based optical devices. The nanocrystal-matrix interface plays a crucial role in understanding its optical and electrical properties. Nanocrystals with diameters varying from 2.17 to 4.56 nm are studied. A detailed quantitative analysis of the variation of Si/SiO2 interface structure and strain distribution with nanocrystal diameter is reported. A linear variation of the interface width with nanocrystal diameter is observed with thinner interfaces for larger nanocrystals. Local deformation analysis reveals that the smaller nanocrystals are highly strained, whereas the strain in the larger ones shifts to the interface. This is in accordance with observed increase in total percentage of defect states in the interface from 39 to 70% for diameter increasing from 2.17 to 4.56 nm. Moreover, based on the atomic arrangements at the interface, optically active defects like Pb centres, E centres and non-bridging oxygen centres are identified and a dominance of Pb centres is observed for all the nanocrystals. The detailed structural characterization-related investigations using the proposed simulation approach will find useful application in designing system-level response of embedded nanocrystals and also to correlate various experimental observations.  相似文献   

18.
Photoluminescence characteristics of amorphous silica nanowires (a-SiONWs) grown on TiN/Ni/Si and TiN/Ni/SiO2 substrates have been studied. A-SiONWs grown on TiN/Ni/Si substrates show a Si-rich composition compared to those grown from TiN/Ni/SiO2/Si. The emission characteristics of the nanowires were found to depend on the type of substrate. By annealing the a-SiONWs grown on TiN/Ni/Si in air, emission bands shift from blue to green bands. It is likely that silicon to oxygen ratio is an important factor in deciding the types of defects and emission bands of amorphous silica nanowires.  相似文献   

19.
The defects at the Si/SiO2 interface have been studied by the deep-level transient spectroscopy (DLTS) technique in p-type MOS structures with and without gold diffusion. The experimental results show that the interaction of gold and Si/SiO2 interface defect,Hit(0.494), results in the formation of a new interface de-fect, Au-Hit(0.445). Just like the interface defect, Hit(0.494), the new interface defect possesses a few interesting properties, for example, when the gate voltage applied across the MOS structure reduces the energy interval between Fermi-level and Si valence band of the Si surface to values smaller than the hole ionization Gibbs free energy of the defect, a sharp DLTS peak is still observable; and the hole apparent activation energy increases with the decrease of the Si surface potential barrier height. These properties can be successfully explained with the transition energy band model of the Si/SiO2 interface.  相似文献   

20.
Based on computer simulation of the physicochemical segregation processes involving dopants implanted into a host material (silicon), the details of boron injection were investigated for four types of angular configurations (direct and inverse kinks and cavities of the “trench” and “square” types) of the “silicon/silicon dioxide” oxidation boundary. A complicated picture of the B distribution inside the Si and SiO2 regions and at the SiO2/Si front was obtained and analyzed in general terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号