首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
A sample of 10 at% Fe-doped SnO2 powder was prepared by mechanical alloying and then thermally treated at 773 K in vacuum. The fit of the diffraction patterns and X-ray absorption spectroscopy measurements revealed that the as milled sample was pure doped rutile. Fe dissolved into SnO2 was found in Fe2+/Fe3+ ionic valence with mainly paramagnetic behavior. After the thermal treatment all techniques indicate the formation of the ternary Sn0.36Fe2.64O4 spinel phase, which is responsible for the observed ferromagnetism.  相似文献   

2.
Magnetic properties of Li2O–MnO2–CaO–P2O5–SiO2 (LMCPS) glasses doped with various amounts of Fe2O3 were investigated. There is a dramatic change in the magnetic property of pristine LMCPS after the addition of Fe2O3 and crystallized at 850 °C for 4 h. Both the electron paramagnetic resonance and magnetic susceptibility measurements showed that the glass ceramic with 4 at% Fe2O3 exhibited the coexistence of superparamagnetism and ferromagnetism at room temperature. When the Fe2O3 content was higher than 8 at%, the LMCPS glasses showed ferromagnetism behavior. The complex magnetic behavior is due to the distribution of (Li, Mn)ferrite particle sizes driven by the Fe2O3 content. The thermal induced hysteresis loss of the crystallized LMCPS glass ceramics was characterized under an alternating magnetic field. The energy dissipations of the crystallized LMCPS glass ceramics were determined by the concentration and Mn/Fe ratios of Li(Mn, Fe)ferrite phase formed in the glass ceramics.  相似文献   

3.
Nanoparticles of ZnS:Fe (0, 1, 3, and 5 at%) were synthesized by a refluxing route at 80 °C. All the samples exhibited cubic structure as revealed by X-ray powder diffraction studies. Blue emission of undoped samples was totally quenched by Fe doping. Magnetic measurements showed that the undoped ZnS was diamagnetic whereas all the doped samples were paramagnetic at room temperature. EPR signal characteristic of Fe3+ was observed in all the doped samples at room temperature. The paramagnetism of the present samples is attributed to the presence of uncoupled Fe3+ ions mediated by cation vacancies.  相似文献   

4.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes.  相似文献   

5.
In this paper, we report investigation of room temperature (RT) ferromagnetism in In2O3 (InO) thin films doped with carbon prepared by the co-sputtering method. InO thin films both undoped and C doped with varied thicknesses in the range of 45 to 80 nm were synthesized on Si substrates with varied C concentrations. The carbon concentration was varied from 1.6 to 9.3 at%. The undoped InO films showed no trace of ferromagnetism. Carbon doped films (InO:C) exhibited ferromagnetism at RT, which was of the orders of 10−5 emu and varied strongly with C concentrations. It is observed that the magnetization reached a maximum value of 5.7 emu/cm3 at 4 at% C. Annealing of the InO:C films in an oxygen environment resulted in a decrease in the magnetization, indicating the crucial role of oxygen vacancies in the films. It is concluded that the oxygen vacancies were important and compete with C substitution for the RT ferromagnetism.  相似文献   

6.
The A-site substituted BaTiO3 ceramics were prepared by solid-state reaction via partial substitution of Fe for Ba2+. By comparison with the B-site substituted sample made under similar conditions, the effect of Fe doping site on microstructure and magnetism was investigated using X-ray diffraction, Mössbauer spectroscopy and vibrating sample magnetometer. It is found that A-site substitution can be realized to a certain extent at 7 at% Fe addition, whereas impurities are observed at higher Fe concentrations. In the nominal (Ba0.93Fe0.07)TiO3 sample, the Fe ions are present as Fe2+ and Fe3+, respectively, replacing A-site Ba2+ and octahedral B-site Ti4+ in hexagonal perovskite lattice. The double-exchange Fe2+-O2−-Fe3+ interactions produce ferromagnetism well above room temperature, but the saturation magnetization and the Curie temperature are both obviously lower than those for B-site substitution due to different magnetic exchange mechanisms. In the B-site substituted sample Ba(Ti0.93Fe0.07)O3, the super-exchange interactions between Fe3+ on pentahedral and octahedral Ti4+ sites are responsible for ferromagnetism. These results mean that B-site substitution is a better way for Fe-doped BaTiO3 system to obtain high-Curie-temperature ferromagnetism. Moreover, increasing pre-sintering time can further improve the magnetism of B-site substituted samples, through which the saturation magnetization for Ba(Ti0.93Fe0.07)O3 is enhanced ∼6 times.  相似文献   

7.
Ba(Ti1−xFex)O3 ceramics (x=7, 30 and 70 at%) were prepared by solid-state reaction. All samples are single-phase with 6H-BaTiO3-type hexagonal perovskite structure. Mössbauer spectra show all Fe atoms to be present as Fe3+ in BaTiO3 lattice, occupying M1 octahedral and pentahedral sites. Room-temperature ferromagnetism is exhibited and saturation magnetization gradually decreases with increasing Fe content. The observed ferromagnetism is considered to be an intrinsic property of Ba(Ti1−xFex)O3, originating from super-exchange interactions between Fe3+ in different occupational sites associated with oxygen vacancies. The variation in magnetization with Fe content is related to the ratio of pentahedral to octahedral sites and oxygen vacancies.  相似文献   

8.
The magnetic and structural properties of Fe ion-implanted GaN was investigated by various measurements. XRD results did not show any peaks associated with second phase formation. The magnetization curve at 5 K showed ferromagnetic behavior for 900 °C-annealed sample. In zero-field-cooled (ZFC) and field-cooled (FC) magnetization measurements, the irreversibility and a cusp-like behavior of the ZFC curve were observed for 900 °C-annealed sample. These behaviors are typically observed in superparamagnetic or spin glass phase. While the temperature dependence magnetization of 800 °C-annealed sample showed non-Brillouin-like curve and it is not exhibited ferromagnetic hysteresis at 5 K. In XPS measurement, the coexistence of metallic Fe (Fe0) and Fe–N bond (Fe2+ and Fe3+) for Fe 2p core level spectra is observed in as-implanted sample. But 700–900 °C-annealed samples showed only Fe–N bond (Fe2+ and Fe3+) spectra. For Ga 3d core level spectra only Ga–N bonds showed for as implanted with 700–900 °C-annealed samples. From XPS results, it could be explained that magnetic property of our films originated from FeN structures.  相似文献   

9.
EPR and optical absorption studies on Fe3+ and Mn2+ doped strontium tetraborate (SrB4O7) glasses are carried out at room temperature. The EPR spectrum of the Fe3+ doped glass consists of signals with g-values 9.04, 4.22 and 2.04, whereas the EPR spectrum of Mn2+ doped glass exhibits a characteristic hyperfine sextet around g=2.0. The spectroscopic analyses of the obtained results confirmed distorted octahedral site symmetry for the Fe3+ and Mn2+ impurity ions. Crystal field and Racah parameters evaluated from optical absorption spectra are: Dq=790, B=700 and C=3000 cm−1 for Fe3+doped glass and Dq=880, B=700 and C=2975 cm−1 for Mn2+ doped glass.  相似文献   

10.
Zn1–xFexO (x=0–0.05) nanoparticles were synthesized without a catalyst by a two-step method. Fe was doped into ZnO by a source of metallic Fe sheets in a solid–liquid system at 80 °C, and the Zn1−xFexO nanoparticles were obtained by annealing at 300 °C. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy were used to characterize the structural properties of the as-grown Zn1−xFexO. The optical properties were determined by Infrared and Ultraviolet–visible spectroscopy. The results confirm that the crystallinity of the ZnO is deteriorated due to Fe-doping. XPS results show that there is a mixture of Fe0+ and the Fe3+ in the representative Zn0.95Fe0.05O sample. The optical band gap of Zn1−xFexO is enhanced with increasing of Fe-doping. Room temperature ferromagnetism was observed in all the Fe-doped ZnO samples.  相似文献   

11.
CdS:Mn2+/ZnS and CdS:Mn2+/CdS core–shell nanoparticles were synthesized in aqueous medium via chemical precipitation method in an ambient atmosphere. Polyvinylpyrrolidone (PVP) was used as a capping agent. The effect of the shell (ZnS and CdS) thickness on CdS:Mn2+ nanoparticles was investigated. Inorganically passivated core/shell nanocrystals having a core (CdS:Mn2+) diameter of 4 nm and a ZnS-shell thickness of ∼0.5 nm exhibited improved PL intensity. Optimum concentration of doping ions (Mn2+) was selected through optical study. For all the core–shell samples two emission peaks were observed, the first one is band edge emission in the lower wavelength side due to energy transfer to the Mn2+ ions in the crystal lattice; the second emission is characteristic peak of Mn2+ ions (4T1 → 6A1). The XRD, TEM and PL results showed that the synthesized core–shell particles were of high quality and monodisperse.  相似文献   

12.
Here, we report the role of particle size on the photoluminescence (PL) properties of CdS:Eu3+ nanocrystals by steady-state and time-resolved PL spectroscopy. It is found that the average decay time 〈τ〉 of undoped CdS nanocrystals increases with increasing the size. The fast component (nanosecond) is assigned due to trapping and slow component (above 10 ns) is due to defect-related emission. The decrease of fast component from 6.6 to 1.32 ns and the slow component from 20 to 14.6 ns of CdS (host) is observed in presence of Eu ions, indicating that the energy transfer occurs from CdS nanoparticles to Eu3+ ions. The decay time of Eu3+ in CdS shows two decay components (microsecond scale) and we believe that the fast component is attributed to surface-bound Eu3+ ions and slow component is due to lattice-bound Eu3+ ions. Analysis suggests that PL efficiency of Eu3+ ions depends on size of nanoparticles.  相似文献   

13.
Epitaxial films of ZnO doped with magnetic ion Fe and, in some cases, with 1% Al show clear evidence of room temperature ferromagnetic ordering. The Al doped optimized samples with carrier concentration nc∼8.0×1020 cm−3 show about 3 times enhanced saturation magnetization (0.58 μB/Fe2+) than the one with nc∼3.0×1020 cm−3 (0.18 μB/Fe2+). A clear correlation between the magnetization per transition metal ion and the ratio of the number of carriers to the number of donors have been found as is expected for carrier-induced room temperature ferromagnetism. The transport mechanism of the electrons in all the DMS films at low temperature range has been identified with the Efros's variable range hopping due to the electron-electron Coulomb interaction.  相似文献   

14.
Fe-doped (Ba1−xSrx)TiO3 ceramics were prepared by solid-state reaction, and ferromagnetism was realized at room temperature. The microstructure and magnetism were modified by the Sr concentration control (0≤x≤75 at%) at a fixed Fe concentration, and the relevant magnetic exchange mechanism was discussed. All the samples are shown to have a single perovskite structure. When increasing the Sr concentration, the phase structure is transformed from a hexagonal perovskite into a cubic perovskite, with a monotonic decrease in lattice parameters induced by ionic size effect. The room-temperature ferromagnetism is expected to originate from the super-exchange interactions between Fe3+ on pentahedral and octahedral Ti sites mediated by the O2− ions. The increase in Sr addition modifies two main influencing factors in magnetic properties: the ratio of pentahedral to octahedral Fe3+ and the concentration of oxygen vacancies, leading to a gradually enhanced saturation magnetization. The highest value, obtained for Fe-doped (Ba0.25Sr0.75)TiO3, is an order of magnitude higher than that of the Fe-doped BaTiO3 system with similar Fe concentration and preparation conditions, which may indicate (Ba1−xSrx)TiO3 as a more suitable matrix material for multiferroic research.  相似文献   

15.
Complex oxides demonstrate specific electric and magnetic properties which make them suitable for a wide variety of applications, including dilute magnetic semiconductors for spin electronics. A tin-iron oxide Sn1−xFexO2 nanoparticulate material has been successfully synthesized by using the laser pyrolysis of tetramethyl tin-iron pentacarbonyl-air mixtures. Fe doping of SnO2 nanoparticles has been varied systematically in the 3-10 at% range. As determined by EDAX, the Fe/Sn ratio (in at%) in powders varied between 0.14 and 0.64. XRD studies of Sn1−xFexO2 nanoscale powders, revealed only structurally modified SnO2 due to the incorporation of Fe into the lattice mainly by substitutional changes. The substitution of Fe3+ in the Sn4+ positions (Fe3+ has smaller ionic radius as compared to the ionic radius of 0.69 Å for Sn4+) with the formation of a mixed oxide Sn1−xFexO2 is suggested. A lattice contraction consistent with the determined Fe/Sn atomic ratios was observed. The nanoparticle size decreases with the Fe doping (about 7 nm for the highest Fe content). Temperature dependent 57Fe Mössbauer spectroscopy data point to the additional presence of defected Fe3+-based oxide nanoclusters with blocking temperatures below 60 K. A new Fe phase presenting magnetic order at substantially higher temperatures was evidenced and assigned to a new type of magnetism relating to the dispersed Fe ions into the SnO2 matrix.  相似文献   

16.
Observation of room-temperature ferromagnetism in Fe- and Ni-co-doped In2O3 samples (In0.9Fe0.1−xNix)2O3 (0?x?0.1) prepared by citric acid sol-gel auto-igniting method is reported. All of the samples with intermediate x values are ferromagnetic at room-temperature. The highest saturation magnetization (0.453 μB/Fe+Ni ions) moment is reached in the sample with x=0.04. The highest solubility of Fe and Ni ions in the In2O3 lattice is around 10 and 4 at%, respectively. The 10 at% Fe-doped sample is found to be weakly ferromagnetic, while the 10 at% Ni-doped sample is paramagnetic. Extensive structure including Extended X-ray absorption fine structure (EXAFS), magnetic and magneto-transport including Hall effects studies on the samples indicate the observed ferromagnetism is intrinsic rather than from the secondary impurity phases.  相似文献   

17.
The effect of W co-doping on the optical, magnetic and electrical properties of Fe-doped BaSnO3 has been studied. Polycrystalline BaSnO3, BaSn0.96Fe0.04O3 and BaSn0.95Fe0.04W0.01O3 samples were prepared using solid state reaction. In the analysis of powder X-ray diffraction patterns, the samples were found to be free of secondary phases. Diffuse reflectance spectra evidenced the substitution of Fe and W for Sn in the host BaSnO3. Micro-Raman spectra confirmed the existence of oxygen vacancies in the samples. Upon W-1% co-doping, the ferromagnetic character of Fe-4% doped BaSnO3 is suppressed drastically and its Curie temperature is reduced to 310 K from 462 K. The existence of F-centers and ferromagnetic interactions at room temperature is evidenced by the electron paramagnetic resonance and ferromagnetic resonance signals observed in the electron spin resonance spectra of the undoped and Fe-4% doped, (Fe-4% and W-1%) co-doped BaSnO3 samples respectively. Suppression of ferromagnetism upon W co-doping is due to the fact that each W6+ ion donates two electrons to the host lattice and it reduces the number of oxygen vacancies that are essential for ferromagnetism to exist in the Fe-doped BaSnO3 samples.  相似文献   

18.
The electroless NiCoFeP films were deposited on a silicon substrate in a bath containing Ni2+, Co2+, and Fe2+ ions with a concentration ratio of 1:1.9:1.2. These films were characterized by using transmission electron microscope, energy dispersive X-ray spectrometer, and alternating gradient magnetometer for their microstructure, crystal structure, and magnetic properties. The result showed that the film deposited at the initial stage (about 10 s) consists of only one phase with a crystal structure of FCC Ni and a composition about Ni (69 at%), Co (19 at%), Fe (4 at%), and P (7 at%); The film deposited at the latter stage (about 30 s) consists of two phase, one is similar to that of initial stage and the other has crystal structure of HCP Co with a composition about Ni (35 at%), Co (44 at%), Fe (19 at%), and P (2 at%). The saturation magnetization and coercivity of electroless NiCoFeP films vary from 525 to 1546 emu/cm3 [0.68–2.01 T] and from 51.44 to 88.5 Oe [4.09–7.04 kA/m], respectively.  相似文献   

19.
Iron doped CdS nanocrystals have been synthesized by using aqueous solution precipitation method. Samples of CdS:Fe have been subjected to irradiation using C+6 (80 MeV) under of 1×1013 ions/cm2. For characterization, X-ray diffraction (XRD), Photoluminescence (PL) and Optical absorption studies have been performed. The system has been found in hexagonal phase having particle size distribution 18–20 nm. Photoluminescence intensity has been found to decrease, while optical band gap has been found to increase in irradiated samples.  相似文献   

20.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号