首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structural, electronic, and optical properties of CdxZn1 − xSe alloys are investigated using the first-principles plane-wave pseudopotential method within the LDA approximations. In particular, the lattice constant, bulk modulus, electronic band structures, density of state, and optical properties such as dielectric functions, refractive index, extinction coefficient and energy loss function are calculated and discussed. Our results agree well with the available data in the literature.  相似文献   

2.
The band structure and optical properties of the CdSexTe1−x ternary mixed crystals have been studied using the pseudopotential formalism under an improved virtual crystal approximation approach. Quantities such as, energy gaps, band-gap bowing parameters, electron effective mass and dielectric constants are calculated. Our results agree well with the available data in the literature. The composition dependence of all studied quantities has been expressed by quadratic polynomial forms.  相似文献   

3.
Spectroscopic ellipsometry measurements of CuInSe2 (CIS) and CuIn1−xGaxSe2 (CIGS) over a range of Cu compositions reveal that there are important differences in electronic and optical properties between α-phase CIS/CIGS and Cu-poor CIS/CIGS. We find a reduction in the imaginary part of the dielectric function ?2 in the spectral region, 1-3 eV. This reduction can be explained in terms of the Cu-3d density of states. An increase in band gap is found for Cu-poor CIS and CIGS due to the reduction in repulsive interaction between Cu-3d and Se-4p states. We also characterize the dielectric functions of polycrystalline thin-film α-phase CuIn1−xGaxSe2 (x=0.18 and 0.36) to determine their optical properties and compare them with similar compositions of bulk polycrystalline CuIn1−xGaxSe2. The experimental results have important implications for understanding the functioning of polycrystalline optoelectronic devices.  相似文献   

4.
The structural, elastic, electronic and optical (x=0) properties of doped Sn1−xBixO2 and Sn1−xTaxO2 (0≤x≤0.75) are studied using the first-principles pseudopotential plane-wave method within the local density approximation. The independent elastic constants Cij and other elastic parameters of these compounds have been calculated for the first time. The mechanical stability of the compounds with different doping concentrations has also been studied. The electronic band structure and density of states are calculated and the effect of doping on these properties is also analyzed. It is seen that the band gap of the undoped compound narrowed with dopant concentration, which disappeared for x=0.26 for Bi doping and 0.36 for Ta doping. The materials thus become conductive oxides through the change in the electronic properties of the compound for x≤0.75, which may be useful for potential application. The calculated optical properties, e.g. dielectric function, refractive index, absorption spectrum, loss-function, reflectivity and conductivity of the undoped SnO2 in two polarization directions are compared with both previous calculations and measurements.  相似文献   

5.
The structural, electronic and elastic properties of TiCxN1−x, ZrxNb1−xC and HfCxN1−x alloys have been investigated by using the plane-wave pseudopotential method within the density-functional theory. The calculations indicate that the variations of the equilibrium lattice constants and bulk modulus with the composition are found to be linear. The calculated elastic constants C44 and shear constants as a function of alloy concentration reveal the anisotropic hardness of these compounds. The partial and total density of states (DOS) for the binary and ternary compounds had been obtained, and the metallic behavior of these alloys had been confirmed by the analysis of DOS.  相似文献   

6.
Synthetic conditions such as stoichiometries, temperature and pressure are optimized to achieve a high quality oxygen deficient SmFeAsO0.6 superconductor. Both electric and magnetic measurements show a sharp superconducting transition at about 55 K. Several important physical parameters are deduced. The apparent superconducting gap observed in heat capacity with 2Δo/kBTc of 4.57 larger than that of previous fluorine replaced samples indicate that this superconductivity will not strongly conflict with the phonon-mediated BCS mechanism. The mean free length ?=18.8 nm and the coherent length ξ=2.3-3.3 nm show that the superconductivity is in the clean limit.  相似文献   

7.
We have performed a first-principle Full Potential Linearized Augmented Plane Waves calculation within the local density approximation (LDA) to the zinc-blende AlxGa1−xAs1−yNy to predict its optical properties as a function of N and Al mole fractions. The accurate calculations of electronic properties such as band structures and optical properties like refractive index, reflectivity and absorption coefficient of AlxGa1−xAs and AlxGa1−xAs1−yNy with x≤0.375 and y up to 4% are presented. AlxGa1−xAs on GaAs have a lattice mismatch less than 0.16% and the lattice constant of AlxGa1−xAs has a derivation parameter of 0.0113±0.0024. The band gap energies are calculated by LDA and the band anticrossing model using a matrix element of CMN=2.32 and a N level of EN=(1.625+0.069x) eV. The results show that AlxGa1−xAs can be very useful as a barrier layer in separate confinement heterostructure lasers and indicate that the best choice of x and y AlxGa1−xAs1−yNy could be an alternative to AlxGa1−xAs when utilized as active layers in quantum well lasers and high-efficiency solar cell structures.  相似文献   

8.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

9.
We investigate the influence of Cu substitution, on the coercivity and magnetic viscosity, in the ternary system GdCo5−xCux (x=0, 0.5, 1, 1.5, 2 and 2.5) with different field sweep rates. All samples have been studied in the as cast state and crystallize in a single phase CaCu5 structure. With Cu addition, the coercivity was 10 times enhanced for x =1.5. The behavior of the coercivity Hc against field sweep rate, dH/dt, shows that the GdCo5−xCux system exhibits only a small magnetic viscosity effect, a desirable property for magnetic dynamic applications under high magnetic field.  相似文献   

10.
Electronic structure and properties of Fe6(N1−xCx)2 carbonitrides with 0≤x≤1, i.e. the concentrations of N and C elements are respectively in range of 0∼7.69 wt% and 0∼6.67 wt%, have been studied by first-principles calculations based on density functional theory (DFT) implemented in the Cambridge Serial Total Energy Package (CASTEP) code. The calculated results show that the Fe6(N1−xCx)2 carbonitrides are thermodynamically and mechanically stable. Lattice parameters and stability of the carbonitrides increase when C atoms replace N atoms in Fe6N2 unit cell. In Fe6(N1−xCx)2 unit cell, the hybridization effect between C-2p and Fe-3d states is stronger than that between N-2p and Fe-3d states. Elastic properties and melting points of the carbonitrides change slightly with the substitution of C atoms for N atoms in Fe6(N1−xCx)2 carbonitrides.  相似文献   

11.
12.
Se100−xHgx bulk samples have been prepared by conventional melt quenching technique. The thin films of the material have been prepared on glass substrate using the thermal evaporation technique. The transmission spectra has been studied to measure the optical constants like absorption coefficient (α), extinction coefficient (K), optical band gap (Eg), Urbach energy (Ee). The DC conductivity (σdc) of Se100−xHgx has been also studied to find the activation energy (ΔEa)(ΔEa). The optical band gap increases and Urbach energy first increases then decreases with increase in Hg concentration. DC conductivity and activation energy increases with increase in Hg concentration. These materials are found suitable for the optical disk materials and in optoelectronic devices due to their high absorption coefficient and dependence of reflectance on composition.  相似文献   

13.
A theoretical study on the structural, elastic, electronic and lattice dynamic properties of AlxYyB1−xyN quaternary alloys in zinc-blend phase has been carried out with first-principles methods. Information on the lattice parameter, the lattice matching to available substrates and energy band-gaps is a prerequisite for many practical applications. The dependence of the lattice parameter a, bulk modulus B, elastic constants C11, C12 and C44, band-gaps, optical phonon frequencies (ωTO and ωLO), the static and high-frequency dielectric coefficients ε (0) and ε () and the dynamic effective charge Z? were analyzed for y=0, 0.121, 0.241, 0.362 and 0.483. A significant deviation of the bulk modulus from linear concentration dependence was observed. A set of isotropic elastic parameters and related properties, namely bulk and shear moduli, Young's modulus, Poisson's ratio are numerically estimated in the frame work of the Voigt-Reuss-Hill approximation. The resistance to changes in bond length and lateral expansion in AlxYyB1−xyN increase with increasing y concentration. We observe that at y concentration about 0.035 and 0.063, AlxYyB1−xyN changes from brittle to ductile and Γ-X indirect fundamental gap becomes Γ-Γ direct fundamental gap. There is good agreement between our results and the available experimental data for the binary compound AlN, which is a support for those of the quaternary alloys that we report for the first time.  相似文献   

14.
The investigation of optoelectronic properties of zinc-blende InPxSb1−x, semiconducting alloys by pseudopotential calculations is studied. The scheme uses the local empirical pseudopotential method, which involves the disorder effect into the virtual crystal approximation by introducing an effective potential disorder. Various quantities for the alloy of interest are calculated. The obtained results show a reasonable agreement with the available experimental data. Special attention has also been given to the compositional dependence of these studied quantities.  相似文献   

15.
Using quantum mechanics GASTEP software package based on the first principle density function theory, the electronic structure and optical properties of Ga1−xAlxAs at different Al constituent are calculated. Result shows that with the increase of Al constituent, the band gap of Ga1−xAlxAs increases and varies from direct band gap to indirect band gap; the absorption band edge and the absorption peak move to high-energy side; the static reflectivity decreases. With the increasing of the incident photon energy, Ga1−xAlxAs shows metal reflective properties in certain energy range. With the increasing of Al constituent, static dielectric constant decreases and the intersection of dielectric function and the x-axis move towards high-energy side; the peak of energy loss function move to low-energy side and the peak value reduces.  相似文献   

16.
Electronic and optical properties of CuGaS2: First-principles calculations   总被引:1,自引:0,他引:1  
Electronic structure and optical properties of CuGaS2 are calculated using the full potential linearized augmented plane wave plus local orbitals method. The calculated equilibrium lattice is in reasonable agreement with the experimental data. The electronic structures indicate that CuGaS2 is a semiconductor with a direct bandgap of 0.81802 eV. Furthermore, other experiments and theory also show that this material has a direct bandgap. It is noted that there is quite strong hybridization between Ga 3d and S 3s orbitals, which belongs to the (GaS2). The complex dielectric functions are calculated, which are in good agreement with the available experimental results.  相似文献   

17.
W. Wang  B. Li  J. Wang 《Physics letters. A》2010,374(7):984-988
By using the first-principles calculation, we study the structural, magnetic, and electronic properties of the SrFeAsF compound and its Co-doped counterpart SrFe1 − xCoxAsF (x=0.125). It is shown that the competition of the nearest and next-nearest neighbor exchange coupling J1 and J2 between Fe ions gives rise to a frustrated striped antiferromagnetic order in SrFeAsF and an accompanied lattice distortion, while for the Co-doped case, both J1 and J2 decrease significantly as well as the lattice distortion, and thus the antiferromagnetic order is suppressed greatly. This is further confirmed by the electronic structure calculation that the density of states at the Fermi level increases with Co doping as well as the itinerancy of Fe d electron.  相似文献   

18.
First-principles calculations based on density functional theory within the generalized gradient approximation have been performed for the Sn1−xPbxO2 solid solution. The doped formation energies and electronic structures are also analyzed. Results show that the Sn0.9375Pb0.0625O2 solid solution has the highest stability because of its minimum formation energy value of 0.04589 eV at a doping ratio of 0.0625. The SnO2 lattice constants expand in a distorted rutile structure after Pb doping. The band structure and density of states calculations indicate that the band gap of SnO2 narrowed due to the presence of the Pb impurity energy levels in the forbidden band, namely, Pb 6s energy band overlaps with the conductivity band in the F–Q direction. In addition, the number of electrons filled at the bottom of the conduction band increases from 0.13 to 3.96 after doping, resulting in the strengthening of the conductivity of the solid solution after doping of plumbum. The results provide a theoretical basis for the development and application of the Sn1−xPbxO2 solid solution electrode.  相似文献   

19.
Physical properties of polycrystalline samples of CeCuxGa4−x (x = 0.2–1.4), crystallizing in the tetragonal BaAl4-type structure (space group I 4/mmm), were studied by means of X-ray powder diffraction, magnetization, specific heat, electrical resistivity and magnetoresistivity measurements in wide temperature and magnetic fields ranges. The unit-cell volume of the system was found to decrease with increasing x (in total by about 4%) but the magnetic moments of Ce3+ ions remain localized in the whole x-range studied. The alloys exhibit ferromagnetic order at low temperatures, which manifests itself as distinct and relatively sharp anomalies in all the temperature characteristics measured. The ordering temperature decreases with increasing the Cu content from 5.5(1) K for x = 0.2 down to 1.35(5) K for x = 1.4, and the electrical transport properties of the system show some features characteristic of Kondo lattices.  相似文献   

20.
Glasses in the system Ge-Se-S were prepared with different Se/S ratios in order to investigate the compositional dependence of selected physical properties. We report the results of a systematic study examining the UV-vis transmission, dc electrical conductivity and X-ray diffraction of the system Ge(SxSe1−x)2 with x=0, 0.1, 0.4 and 1.0 where replacement of S by Se was made. The changes in the optical energy gap, Eg, (from 1.95 to 2.43 eV) and band tail width, Ee, (from 103 to 243 meV) behave contrarily to the change in refractive index, n, (from 2.3 to 2) with the progressive replacement of S by Se. This behavior was discussed and interpreted with the changes in cohesive energy. The analysis of defects in the prepared films was carried out by the examination of activation energies obtained from dc electrical conductivity. The analysis of the X-ray diffraction pattern revealed a remarkable reduction in the intensity of the first and second diffraction peaks with the progressive replacement of S content, which confirms a change in the intermediate range order structure: reorganization of the structural properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号