首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider Chern–Simons theories for the Poincaré, de Sitter and anti-de Sitter groups in three dimensions which generalise the Chern–Simons formulation of 3d gravity. We determine conditions under which κ-Poincaré symmetry and its de Sitter and anti-de Sitter analogues can be associated to these theories as quantised symmetries. Assuming the usual form of those symmetries, with a timelike vector as deformation parameter, we find that such an association is possible only in the de Sitter case, and that the associated Chern–Simons action is not the gravitational one. Although the resulting theory and 3d gravity have the same equations of motion for the gauge field, they are not equivalent, even classically, since they differ in their symplectic structure and the coupling to matter. We deduce that κ-Poincaré symmetry is not associated to either classical or quantum gravity in three dimensions. Starting from the (non-gravitational) Chern–Simons action we explain how to construct a multi-particle model which is invariant under the classical analogue of κ-de Sitter symmetry, and carry out the first steps in that construction.  相似文献   

2.
We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker–Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira–Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.  相似文献   

3.
Quantum Brownian motion, described by the Caldeira–Leggett model, brings insights to the understanding of phenomena and essence of quantum thermodynamics, especially the quantum work and heat associated with their classical counterparts. By employing the phase-space formulation approach, we study the heat distribution of a relaxation process in the quantum Brownian motion model. The analytical result of the characteristic function of heat is obtained at any relaxation time with an arbitrary friction coefficient. By taking the classical limit, such a result approaches the heat distribution of the classical Brownian motion described by the Langevin equation, indicating the quantum–classical correspondence principle for heat distribution. We also demonstrate that the fluctuating heat at any relaxation time satisfies the exchange fluctuation theorem of heat and its long-time limit reflects the complete thermalization of the system. Our research study justifies the definition of the quantum fluctuating heat via two-point measurements.  相似文献   

4.
Transport properties of particles and waves in spatially periodic structures that are driven by external time-dependent forces manifestly depend on the space–time symmetries of the corresponding equations of motion. A systematic analysis of these symmetries uncovers the conditions necessary for obtaining directed transport. In this work we give a unified introduction into the symmetry analysis and demonstrate its action on the motion in one-dimensional periodic, both in time and space, potentials. We further generalize the analysis to quasi-periodic drives, higher space dimensions, and quantum dynamics. Recent experimental results on the transport of cold and ultracold atomic ensembles in ac-driven optical potentials are reviewed as illustrations of theoretical considerations.  相似文献   

5.
Classical motion in an inverse square potential is shown to be equivalent to free motion on a hyperbola. The existence of a classical splitting between the q>0 and q<0 regions of motion is demonstrated. We show that this last property may be regarded as the classical counterpart of the superselection rule occurring in the corresponding quantum problem. We solve the quantum problem in momentum space finding that there is no way of quantizing its energy but that the eigenfunctions suffice to describe the single renormalized bound state of the system. The dynamical symmetry of the classical problem is found to be O(1,1). Both this symmetry and the symmetry of inversion through the origin are found to be broken.  相似文献   

6.
Ciann-Dong Yang   《Annals of Physics》2006,321(12):2876-2926
This paper gives a thorough investigation on formulating and solving quantum problems by extended analytical mechanics that extends canonical variables to complex domain. With this complex extension, we show that quantum mechanics becomes a part of analytical mechanics and hence can be treated integrally with classical mechanics. Complex canonical variables are governed by Hamilton equations of motion, which can be derived naturally from Schrödinger equation. Using complex canonical variables, a formal proof of the quantization axiom p →  = −i, which is the kernel in constructing quantum-mechanical systems, becomes a one-line corollary of Hamilton mechanics. The derivation of quantum operators from Hamilton mechanics is coordinate independent and thus allows us to derive quantum operators directly under any coordinate system without transforming back to Cartesian coordinates. Besides deriving quantum operators, we also show that the various prominent quantum effects, such as quantization, tunneling, atomic shell structure, Aharonov–Bohm effect, and spin, all have the root in Hamilton mechanics and can be described entirely by Hamilton equations of motion.  相似文献   

7.
A nonlinear theory of quantum Brownian motion in classical environment is developed based on a thermodynamically enhanced nonlinear Schrödinger equation. The latter is transformed via the Madelung transformation into a nonlinear quantum Smoluchowski-like equation, which is proven to reproduce key results from the quantum and classical physics. The application of the theory to a free quantum Brownian particle results in a nonlinear dependence of the position dispersion on time, being quantum generalization of the Einstein law of Brownian motion. It is shown that the time of decoherence from quantum to classical diffusion is proportional to the square of the thermal de Broglie wavelength divided by the classical Einstein diffusion constant.  相似文献   

8.
We discuss two examples of classical mechanical systems which can become quantum either because of degeneracy of an integral of motion or because of tuning parameters at resonance. In both examples, the commutativity of the symmetry algebra is breaking, and noncommutative symmetries arise. Over the new noncommutative algebra, the system can reveal its quantum behavior including the tunneling effect. The important role is played by the creation-annihilation regime for the perturbation or anharmonism. Activation of this regime sometimes needs in an additional resonance deformation (Cartan subalgebra breaking).  相似文献   

9.
A classical (or quantum) superintegrable system on an n-dimensional Riemannian manifold is an integrable Hamiltonian system with potential that admits 2n ? 1 functionally independent constants of the motion that are polynomial in the momenta, the maximum number possible. If these constants of the motion are all quadratic, then the system is second-order superintegrable, the most tractable case and the one we study here. Such systems have remarkable properties: multi-integrability and separability, a quadratic algebra of symmetries whose representation theory yields spectral information about the Schrödinger operator, and deep connections with expansion formulas relating classes of special functions. For n = 2 and for conformally flat spaces when n = 3, we have worked out the structure of the classical systems and shown that the quadratic algebra always closes at order 6. Here, we describe the quantum analogs of these results. We show that, for nondegenerate potentials, each classical system has a unique quantum extension.  相似文献   

10.
We show from first principles the emergence of classical Boltzmann equations from relativistic nonequilibrium quantum field theory as described by the Kadanoff–Baym equations. Our method applies to a generic quantum field, coupled to a collection of background fields and sources, in a homogeneous and isotropic spacetime. The analysis is based on analytical solutions to the full Kadanoff–Baym equations, using the WKB approximation. This is in contrast to previous derivations of kinetic equations that rely on similar physical assumptions, but obtain approximate equations of motion from a gradient expansion in momentum space. We show that the system follows a generalized Boltzmann equation whenever the WKB approximation holds. The generalized Boltzmann equation, which includes off-shell transport, is valid far from equilibrium and in a time dependent background, such as the expanding universe.  相似文献   

11.
The quantum Brownian motion model is a typical model in the study of nonequilibrium quantum thermodynamics. Entropy is one of the most fundamental physical concepts in thermodynamics.In this work, by solving the quantum Langevin equation, we study the von Neumann entropy of a particle undergoing quantum Brownian motion. We obtain the analytical expression of the time evolution of the Wigner function in terms of the initial Wigner function. The result is applied to the thermodynamic equilibrium initial state, which reproduces its classical counterpart in the high temperature limit. Based on these results, for those initial states having well-defined classical counterparts, we obtain the explicit expression of the quantum corrections to the entropy in the weak coupling limit. Moreover, we find that for the thermodynamic equilibrium initial state, all terms odd in h are exactly zero. Our results bring important insights to the understanding of entropy in open quantum systems.  相似文献   

12.
We study both classical and quantum relation between two Hamiltoniansystems which are mutually connected by time-dependent canonical transformation. One is ordinary conservative system and the other istime-dependent Hamiltonian system. The quantum unitary operatorrelevant to classical canonical transformation between the two systems are obtained through rigorous evaluation. With the aid of the unitary operator, we have derived quantum states of the time-dependent Hamiltonian system through transforming the quantum states of the conservative system. The invariant operators of the two systems are presented and the relation between them are addressed. We showed that there exist numerous Hamiltonians, which gives the same classical equation of motion. Though it is impossible to distinguish the systems described by these Hamiltonians within the realm of classical mechanics, they can be distinguishable quantum mechanically.  相似文献   

13.
We analyze the quantization of the Pais–Uhlenbeck fourth order oscillator within the framework of deformation quantization. Our approach exploits the Noether symmetries of the system by proposing integrals of motion as the variables to obtain a solution to the ??-genvalue equation, namely the Wigner function. We also obtain, by means of a quantum canonical transformation the wave function associated to the Schrödinger equation of the system. We show that unitary evolution of the system is guaranteed by means of the quantum canonical transformation and via the properties of the constructed Wigner function, even in the so called equal frequency limit of the model, in agreement with recent results.  相似文献   

14.
The quantum correspondence of the very peculiar phenomenon of classical chaos-the exponential instability of motion can be characterized by the initially exponential growth rate of the total uncertainty measurement of the propagating quantum wave packet. Our calculation indicates that quantitatively the growth rate is approximately twice the classical maximum Lyapunov exponent of the system.  相似文献   

15.
We extend recent work by Tremblay, Turbiner, and Winternitz which analyzes an infinite family of solvable and integrable quantum systems in the plane, indexed by the positive parameter k. Key components of their analysis were to demonstrate that there are closed orbits in the corresponding classical system if k is rational, and for a number of examples there are generating quantum symmetries that are higher order differential operators than two. Indeed they conjectured that for a general class of potentials of this type, quantum constants of higher order should exist. We give credence to this conjecture by showing that for an even more general class of potentials in classicalmechanics, there are higher-order constants of the motion as polynomials in the momenta. Thus these systems are all superintegrable.  相似文献   

16.
17.
We present a gauge-invariant approach for associating a geometric phase with the phase space trajectory of a classical dynamical system. As an application, we consider the classical analog of the quantum Aharonov–Bohm (AB) Hamiltonian for a charged particle orbiting around a current carrying long thin solenoid. We compute the classical geometric phase of a closed phase space trajectory, and also determine its dependence on the magnetic flux enclosed by the orbit. We study the similarities and differences between this classical geometric phase and the AB phase acquired by the wave function of the quantum AB Hamiltonian. We suggest an experiment to measure the geometric phase for the classical AB system, by using an appropriate optical fiber ring interferometer.  相似文献   

18.
The Lagrangian field-antifield formalism of Batalin and Vilkovisky (BV) is used to investigate the application of the collective coordinate method to soliton quantisation. In field theories with soliton solutions, the Gaussian fluctuation operator has zero modes due to the breakdown of global symmetries of the Lagrangian in the soliton solutions. It is shown how Noether identities and local symmetries of the Lagrangian arise when collective coordinates are introduced in order to avoid divergences related to these zero modes. This transformation to collective and fluctuation degrees of freedom is interpreted as a canonical transformation in the symplectic field-antifield space which induces a time-local gauge symmetry. Separating the corresponding Lagrangian path integral of the BV scheme in lowest order into harmonic quantum fluctuations and a free motion of the collective coordinate with the classical mass of the soliton, we show how the BV approach clarifies the relation between zero modes, collective coordinates, gauge invariance and the center-of-mass motion of classical solutions in quantum fields. Finally, we apply the procedure to the reduced nonlinear O(3) σ-model.  相似文献   

19.
The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein–Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space–time data collected by probing the particle is obtained from the most robust experiment and that on average, the classical relativistic equation of motion of a particle holds.  相似文献   

20.
《Current Applied Physics》2015,15(11):1402-1411
In this paper, we have studied the motion of buckminsterfullerene (C60) on a gold surface by analyzing its potential energy and using classical molecular dynamics method. The results can be employed to investigate the motion of C60-based nanocars which have been made in recent years. For this purpose, we have studied the translational and rotational motions of C60 molecule independently. First, we have calculated the potential energy of a C60 molecule on a gold surface in different orientations and positions and employed this data to predict fullerene motion by examining its potential energy. Then we have simulated the motion of C60 at different temperatures using classical molecular dynamics methods. Specifying the regime of the motion at different temperatures is one of main goals of this paper. We have found that the rotational motion of C60 molecule on the gold substrate, was easier than its sliding (translational) motion. Also, the regime of motion of fullerene depended on temperature. The results demonstrate that three different regimes of motion, dependent on temperature, could be observed: rare jumps to adjacent cells, frequent jumps, and continuous motion. Employing the results of this paper not only helps to understand the C60 motion on the gold surface but also provides an appropriate tool for realizing motion of the thermally-driven fullerene-based nanocars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号