首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aligned carbon nanotube/carbon (Acnt/C) nanocomposites have been fabricated by densifying an Acnt preform with chemical vapour infiltration technology. Microstructure observations show that pyrocarbon in Acnt/C was mainly rough lamella type while pyrocarbon in carbon fiber reinforced carbon matrix (C/C) composites was typically smooth lamella type in spite of the same process. The thermal conductivity of these Acnt/C nanocomposites is about 4 times that of C/C composites. Their electrical conductivity of Acnt/C nanocomposites was anisotropic, i.e. approximately 1.61×104 Ω−1 m−1 and 5.68×103 Ω−1 m−1 in the direction parallel and vertical to the aligned carbon nanotubes, respectively.  相似文献   

2.
The dielectric behavior of polymethyl methacrylate/multi-walled carbon nanocomposites (PMMA/MWCNTs) was investigated using impedance spectroscopy technique. The composites were prepared using melt mixing with MWCNTs loading ranging from 0.01 to 10 wt%. The experimental results showed that the measured impedance reflects the insulating behavior of the host material (PMMA) with no appreciable effects of the filler less than 8.5 wt%. However, for the sample containing 10 wt%, the calculated value of dc conductivity increases with increasing temperature from 2.0×10−6 (Ω m)−1 to attain a value of 4.8×10−6 (Ω m)−1 at 110 °C. The percolation threshold derived from the dielectric data was estimated to be higher than 8.5 wt% and lower than 10 wt%. A temperature dependent electrical relaxation phenomenon was only observed in the sample containing 10 wt% of MWCNTs. The frequency dependence of the ac conductivity data followed a power law.  相似文献   

3.
卢明明  袁杰  温博  刘甲  曹文强  曹茂盛 《中国物理 B》2013,22(3):37701-037701
We investigate the dielectric properties of multi-walled carbon nanotubes (MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 102-107 Hz. MWCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers. Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold. Variations of dielectric properties of the composites are in agreement with the percolation theory. All the percolation phenomena are determined by hopping and migrating electrons, which are attributed to the special electronic transport mechanism of the fillers in the composites. However, the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites, while in the graphite/SiO2 composites, there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%. The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism, especially the network effect of MWCNTs in the composites. The formation of network plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.  相似文献   

4.
The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 × 1028 m−3), density (maximally 1.16 g cm−3), and tear strength (11.2 kN m−1), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.  相似文献   

5.
The electrical conductivities of carbon-black-filled low-density polyethylene (LDPE), poly(methyl methacrylate) (PMMA), and poly(vinyl chloride)-vinyl acetate (PVC/ VAc) copolymer were measured as functions of carbon content and melt viscosity of the matrix at the temperatures at which the composites were prepared. Sharp breaks in the relationship between the carbon filler content and the conductivity of composites were observed in all specimens at some content of the carbon filler. The conductivity jumps as much as 10 orders of magnitude at the break point. This phenomenon has been known as the “percolation threshold”. The critical carbon content corresponding to the break point  相似文献   

6.
To study the effect of vibration field on the electrical conductivity properties of nanocomposites, isotactic polypropylene (iPP)/multiwalled carbon nanotubes (MWCNT) composites were prepared by conventional injection molding and vibration injection molding. Results showed that the electrical conductivity of iPP/MWCNT composites was significantly promoted by vibration injection molding. Vibration injection molded samples had a percolation threshold of about 2.7 wt% compared with the threshold of about 4.5 wt% for conventional injection molded samples. The effects of test locations and vibration frequency on the electrical conductivity of composites were investigated. The samples exhibited an inhomogeneity along the injection direction. The electrical conductivity of the samples was different at different test locations and increased with increasing vibration frequency. Polarized light microscopy (PLM) results indicated that vibration injection molding can induce MWCNT aggregates to be stretched and oriented along the flow direction, which could form conductive networks and greatly enhance the electrical conductivity of iPP/MWCNT composites.  相似文献   

7.
Thorn-like, organometallic-functionalized carbon nanotubes were successfully developed via a novel microwave hydrothermal route. The organometallic complex with methyl orange and iron (III) chloride served as reactive seed template, resulting in the oriented polymerization of pyrrole on the modified carbon nanotubes without the assistance of other oxidants. Morphological and structural characterizations of the carbon nanotube/methyl orange-iron (III) chloride and polypyrrole/carbon nanotube composites were examined using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), infrared spectroscopy and X-ray diffraction (XRD). The electrochemical property of the polypyrrole/carbon nanotube composite was elucidated by cyclic voltammetry and galvanostatic charge-discharge. A specific capacitance of 304 F g−1 was obtained within the potential range of −0.5-0.5 V in 1 M KCl solution.  相似文献   

8.
Conductive patterns of poly(3,4‐ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)/multi‐walled carbon nanotube (MWCNT) composites were deposited on glass substrates using a drop on demand (DOD) inkjet printer, with the concentration of CNT varied from 0.01 wt% to 0.05 wt%. We show that by increasing the concentration of the nanotubes in the ink, percolated networks of well distributed carbon nanotubes in the printed samples can be achieved. Moreover, the orientation of the nanotubes in the printed sample can be controlled using a novel simple approach. The impact of the nanotube alignment on the conduction properties of inkjet printed nano‐hybrid materials is studied and shown in this Letter. Samples with aligned nanotubes show a 53% enhanced conductivity in comparison with the randomly oriented nanotubes. The results show that the electrical performance of the nano‐composite can be improved further by controlling the dispersion and orientation of the nano‐filler in the printed samples.

  相似文献   


9.
Transparent conducting thin films of fluorine-doped tin oxide (FTO) have been deposited onto the preheated glass substrates of different thickness by spray pyrolysis process using SnCl4·5H2O and NH4F precursors. Substrate thickness is varied from 1 to 6 mm. The films are grown using mixed solvent with propane-2-ol as organic solvent and distilled water at optimized substrate temperature of 475 °C. Films of thickness up to 1525 nm are grown by a fine spray of the source solution using compressed air as a carrier gas. The films have been characterized by the techniques such as X-ray diffraction, optical absorption, van der Pauw technique, and Hall effect. The as-deposited films are preferentially oriented along the (2 0 0) plane and are of polycrystalline SnO2 with a tetragonal crystal structure having the texture coefficient of 6.19 for the films deposited on 4 mm thick substrate. The lattice parameter values remain unchanged with the substrate thickness. The grain size varies between 38 and 48 nm. The films exhibit moderate optical transmission up to 70% at 550 nm. The figure of merit (φ) varies from 1.36×10−4 to 1.93×10−3 Ω−1. The films are heavily doped, therefore degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) of 7.5 Ω is obtained for a typical sample deposited on 4 mm thick substrate. The resistivity (ρ) and carrier concentration (nD) vary over 8.38×10−4 to 2.95×10−3 Ω cm and 4.03×1020 to 2.69×1021 cm−3, respectively.  相似文献   

10.
Transparent conductive ZnO:Ga thin films were deposited on Corning 1737 glass substrate by pulsed direct current (DC) magnetron sputtering. The effects of process parameters, namely pulse frequency and film thickness on the structural and optoelectronic properties of ZnO:Ga thin films are evaluated. It shows that highly c-axis (0 0 2) oriented polycrystalline films with good visible transparency and electrical conductivity were prepared at a pulsed frequency of 10 kHz. Increasing the film thickness also enlarged the grain size and carrier mobility which will subsequently lead to the decrease in resistivity. In summary, ZnO:Ga thin film with the lowest electrical resistivity of 2.01 × 10−4 Ω cm was obtained at a pulse frequency of 10 kHz with 500 nm in thickness. The surface RMS (root mean square) roughness of the film is 2.9 nm with visible transmittance around 86% and optical band gap of 3.83 eV.  相似文献   

11.
Cobalt oxides/carbon fibers (CoOx/CFs) composites were synthesized by thermal oxidation of cobalt coated carbon fibers (Co/CFs). The scanning electron microscopy images and X-ray diffraction pattern indicate that the layers are about 0.7 μm and composed of Co3O4 and CoO (CoOx), the preferred condition for preparation of CoOx/CFs composites is to anneal Co/CFs precursors at 350 °C for 3 h in air. The coercivity, saturation magnetization and residual magnetization of the CoOx/CFs composites are 464.8 Oe, 10.62 emu/g and 2.21 emu/g, respectively. The reflectivity of cobalt oxides coated carbon fibers (1.11-5.12 mm in thickness) is less than −10 dB over the working frequency range of 4.04-18.00 GHz and less than −20 dB over 11.54-14.77 GHz. The lowest reflectivity is −45.16 dB at 13.41 GHz when the thickness is 1.50 mm.  相似文献   

12.
The electrical properties of a polymer composite with carbon nanotube additives have been analyzed. The state of the system near the percolation threshold, when charge is transferred along a single percolation path, has been considered. For this state, the current–voltage characteristics of a percolation chain made up of carbon nanotubes have been calculated under the assumption that the contact resistance between neighboring nanotubes is much higher than the intrinsic resistance of the nanotubes. According to recent data, the distance between neighboring (contacting) nanotubes has been assumed to be randomly distributed. It has been shown that, under the given conditions, the current–voltage characteristic is essentially nonlinear. This indicates the nonohmic conductivity of the composites. The dependence of the current–voltage characteristic on the spread of the contact distribution over distances has been discussed.  相似文献   

13.
The effect of carbon filler on the electrical resistance and the thermopower of copper oxide-based composites produced by ceramic technology by hot pressing has been studied. It is found that the dependences of the electrical resistivity on the filler concentration are characteristic by S-like curves that are typical of percolation systems; in this case, the resistivity decreases more substantially as the carbon content increases as compared to the decrease in thermopower value, which is accompanied by the existence of the maximum of the factor of thermoelectric power near the percolation threshold. The studies of the temperature dependences of the resistivity and the thermopower at low temperatures show that, in the range 240–300 K, the predominant mechanism of the electrotransfer of all the composites under study is the hopping mechanism. At temperatures lower than 240 K, the composites with a nanocrystalline CuO matrix have a hopping conductivity with a variable hopping distance over localized states of the matrix near the Fermi level, which is related to the conductivity over intergrain CuO boundaries. A schematic model of the band structure of nanocrystalline CuO with carbon filler is proposed on the base of the analysis of the found experimental regularities of the electrotransfer.  相似文献   

14.
Abstract

The mechanical properties and the electrical and thermal conductivity of composites based on an epoxy polymer (EP) filled with dispersed copper (Cu) and nickel (Ni) were studied. It was shown that the electrical conductivity of the composites demonstrated percolation behavior with the values of the percolation threshold being 9.9 and 4.0?vol.% for the EP-Cu and EP-Ni composites, respectively. Using the Lichtenecker model, the thermal conductivity of the dispersed metal phase in the composites, λf, was estimated as being 35?W/mK for Cu powder and 13?W/mK for Ni powder. It was shown that introduction of the filler in EP led to a decrease in the intensity of the mechanical loss tangent (tan δ) peak that was caused by the existence of an immobilized polymer layer around the filler particles which did not contribute to mechanical losses. Using several models the thickness of this layer, ΔR, was estimated. The concept of an “excluded volume” of the polymer, Vex, i.e. the volume of the immobilized polymer layer, which does not depend on the particle size and is determined solely by the value of the interaction parameter, B, was proposed.  相似文献   

15.
The microwave absorption properties of nanosized double perovskite Sr2FeMoO6 and epoxy resin composites were investigated in the frequency range of 2-18 GHz using the coaxial method. The Sr2FeMoO6 composites with an optimal 20 wt% epoxy resin showed a strong electromagnetic attenuation of −49.3 dB at 8.58 GHz with a matching thickness of 2.15 mm. Moreover the optimum absorption frequency at which the reflection loss is less than −20 dB, which corresponds to 99% reflection loss of the incident microwave, is from 5.7 to 13.2 GHz with the matching thickness ranging from 3.0 to 1.5 mm. The excellent microwave-absorption properties are a consequence of a proper electromagnetic match due to the existence of the insulating matrix of anti-site defects and anti-phase domains, which not only contribute to the dielectric loss but also to the reduced eddy current loss.  相似文献   

16.
This study concentrated on producing anticorrosive coating depending on alkyd resin blended with polyaniline-carbon allotropes composites as filler. Polyaniline (PANI) and its composites were produced by doping of PANI with the carbon allotropes (graphene and multi-walled carbon nanotubes) and carbon-oxide allotropes (graphene oxide and multi-walled carbon nanotubes oxide) in different ratios through in situ chemical polymerization. The morphology of PANI and its composites were examined by transmission electron microscope (TEM), which proved that PANI composites appeared as a shell layer in core/shell structure with various overlay thickness depending on the adsorption type for polyaniline. The performance of the prepared coatings in cabinet salt agrees with electrical conductivity values where the best PANI/composite in conductivity value is the most efficient as an anti-corrosive coating.  相似文献   

17.
Transparent conducting Al-doped ZnO (AZO) thin films have been deposited by sol-gel route. Starting from an aqueous solution of zinc acetate by adding aluminum chloride as dopant, a c-axis oriented polycrystalline ZnO thin film 100 nm in thickness could be spin-coated on glass substrates via a two-step annealing process under reducing atmosphere. The effects of thermal annealing and dopant concentration on the structural, electrical and optical properties of AZO thin films were investigated. The post-treated AZO films exhibited a homogenous dense microstructure with grain sizes less than 10 nm as characterized by SEM photographs. The annealing atmosphere has prominent impact on the crystallinity of the films which will in turn influence the electrical conductivity. By varying the doping concentrations, the optical and electrical properties could be further adjusted. An optimal doping concentration of Al/Zn = 2.25 at.% was obtained with minimum resistivity of 9.90 × 10−3 Ω-cm whereas the carrier concentration and mobility was 1.25 × 1020 cm−3 and 5.04 cm2 V−1 s−1, respectively. In this case, the optical transmittance in the visible region is over 90%.  相似文献   

18.
Undoped ZnO thin films of different thicknesses were prepared by r.f. sputtering in order to study the thickness effect upon their structural, morphological, electrical and optical properties. The results suggest that the film thickness seems to have no clear effect upon the orientation of the grains growth. Indeed, the analysis with X-ray diffraction show that the grains were always oriented according to the c(0 0 2)-axis perpendicular to substrate surface whatever the thickness is. However, the grain size was influenced enough by this parameter. An increase in the grain size versus the thickness was noted. For the electrical properties, measurements revealed behaviour very dependent upon thickness. The resistivity decreased from 25 to 1.5×10−3 Ω cm and the mobility increased from 2 to 37 cm2 V−1 s−1 when the thickness increased from 70 to 1800 nm while the carrier concentration seems to be less affected by the film thickness and varied slightly remaining around 1020 cm−3. Nevertheless, a tendency to a decrease was noticed. This behaviour in electrical properties was explained by the crystallinity and the grain size evolution. The optical measurements showed that all the samples have a strong transmission higher than 80% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the thickness increased. This result shows that the band gap is slightly decreases from 3.37 to 3.32 eV with the film thickness vary from 0.32 to 0.88 μm.  相似文献   

19.
Manganese zinc ferrites (MZF) have resistivities between 0.01 and 10 Ω m. Making composite materials of ferrites with either natural rubber or plastics will modify the electrical properties of ferrites. The moldability and flexibility of these composites find wide use in industrial and other scientific applications. Mixed ferrites belonging to the series Mn(1−x)ZnxFe2O4 were synthesized for different ‘x’ values in steps of 0.2, and incorporated in natural rubber matrix (RFC). From the dielectric measurements of the ceramic manganese zinc ferrite and rubber ferrite composites, ac conductivity and activation energy were evaluated. A program was developed with the aid of the LabVIEW package to automate the measurements. The ac conductivity of RFC was then correlated with that of the magnetic filler and matrix by a mixture equation which helps to tailor properties of these composites.  相似文献   

20.
Strontium ferrite particles were firstly prepared by sol-gel method and self-propagating synthesis, and then the polyaniline/strontium ferrite/multiwalled carbon nanotubes composites were synthesized through in situ polymerization approach. Structure, morphology and properties of the composite were characterized by various instruments. XRD analysis shows that the output of PANI increases with the increase of the content of MWCNTs, due to the large surface area of MWCNTs. Because of the coating of PANI, the outer diameter of MWCNTs increases from 10 nm to 20-40 nm. The electrical conductivity of the composites increases with the amount increase of MWCNTs and reaches 7.2196 S/cm in the presence of 2 g MWCNTs. The coercive force of the composites prepared with 2 g MWCNTs is 7457.17 Oe, which is much bigger than that of SrFe12O19 particles 6145.6 Oe, however, both the saturation magnetization and the remanent magnetization of the composite become much smaller than those of SrFe12O19 particles. The electromagnetic properties of the composite are excellent in the frequency range of 2-18 GHz, which mainly depend on the dielectric loss in the range of 2-9 GHz, and mainly on the magnetic loss in the range of 9-18 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号