首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In2S3 thin films were grown on glass substrates by means of the vacuum thermal evaporation technique and subsequently thermally annealed in nitrogen and free air atmosphere from 250 to 350 °C for different durations. Experimental parameters have been adjusted in order to optimize the annealing conditions, and to obtain high band gap energy at low deposition temperature, as required for photovoltaic applications. In order to improve our understanding of the influence of the deposition and annealing parameters on device performance, we have investigated our indium sulfide material by X-ray diffraction, energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and spectrophotometry. The optical and structural properties of the films were studied as a function of the annealing temperature and durations. X-ray diffraction analysis shows the initial amorphous nature of deposited In-S thin films and the phase transition into crystalline In2S3 upon thermal annealing. Films show a good homogeneity and optical direct band gap energy about 2.2 eV. An annealing temperature of 350 °C during 60 min in air atmosphere were the optimal conditions.  相似文献   

2.
Two different semiconducting bismuth sulfide (Bi2S3) nanostructures (feather-like Bi2S3 nanotubes and fiber-like Bi2S3 nanotubes) with diameters around 50-60 nm and lengths about tens of micrometers were prepared successfully by a chemical lithography route. The results indicated that the employment of polyvinylpyrrolidone led to the precursor with feather-like morphology and the acid had ripening effect on and etching action to the ultimate formation of the fiber-like Bi2S3 nanotubes. The photoluminescence spectra of two different Bi2S3 nanostructures revealed that the relative position of emission peaks was influenced by the thin edges of the feather-like nanotubes due to the quantum-confinement effect.  相似文献   

3.
Unintentionally doped and zinc-doped indium nitride (U-InN and InN:Zn) films were deposited on (0 0 0 1) sapphire substrates by radio-frequency reactive magnetron sputtering, and all samples were then treated by annealing to form In2O3 films. U-InN and InN:Zn films have similar photon absorption characteristics. The as-deposited U-InN and InN:Zn film show the absorption edge, ∼1.8-1.9 eV. After the annealing process at 500 °C for 20 min, the absorption coefficient at the visible range apparently decreases, and the absorption edge is about 3.5 eV. Two emission peaks at 3.342 eV (371 nm) and 3.238 eV (383 nm) in the 20 K photoluminescence (PL) spectrum of In2O3:Zn films were identified as the free-exciton (FE) or the near band-to-band (B-B) and conduction-band-to-acceptor (C-A) recombination, respectively.  相似文献   

4.
魏合林  张磊  刘祖黎  姚凯伦 《中国物理 B》2011,20(11):118102-118102
Uniformly distributed polycrystalline indium nanohillocks are synthesized on silicon substrates with Au catalyst by using the radio frequency magnetic sputtering technique. The results show that the Au catalyst plays a key role in the formation of indium nanohillocks. After thermally oxidizing the indium nanohillocks at 500 ℃ in air for 5 h, the indium nanohillocks totally transform into In2O3 nanohillocks. The energy-dispersive X-ray spectroscopy result indicates that many oxygen vacancies and oxygen-indium vacancy pairs exist in the In2O3 nanohillocks. Photoluminescence spectra under an Ne laser excitation at 280 nm show broad emissions at 420 nm and 470 nm with a shoulder at 450 nm related to oxygen vacancies and oxygen-indium vacancies at room temperature.  相似文献   

5.
In2O3 is introduced into TiO2 by sol-gel method to improve the response/recovery rate and expand the operating temperature, when the In2O3-TiO2 mixed system is exposed to H2/O2. The sensor is fabricated by thick film technology. Influence of In2O3 on the film phase composition, microstructure and sensing characteristics is discussed. Dynamic response properties show that the operating temperature of the mixed system is at 500-800 °C, which is about 600-800 °C for pure TiO2. Response time of the sensor is about 200-260 ms (millisecond) while recovery time is in a narrow range of 60-280 ms at 600-800 °C. The promoting mechanism is suggested to arise from the introduction of In2O3 and grain size effect of the sensing film. Then In2O3-TiO2 thick films are surface-modified by Pt using chloroplatinic acid. The promoting effect of Pt dispersed on the mixed system is also investigated.  相似文献   

6.
Optical non destructive evaluation methods, using lasers as the object illumination source, include holographic interferometry. It is widely used to measure stress, strain, and vibration in engineering structures. Double exposure holographic interferometry (DEHI) technique is used to determine thickness and stress of electrodeposited bismuth trisulphide (Bi2S3) thin films for various deposition times. The same is tested for other concentration of the precursors. It is observed that, increase in deposition time, increases thickness of thin film but decreases stress to the substrate. The structural, optical and surface wettability properties of the as deposited films have been studied using X-ray diffraction (XRD), optical absorption and contact angle measurement, respectively. The X-ray diffraction study reveals that the films are polycrystalline with orthorhombic crystal structure. Optical absorption study shows the presence of direct transition with band bap 1.78 eV. The water contact angle measurement shows hydrophobic nature of Bi2S3 thin film surface.  相似文献   

7.
Core-shell structured ZnO/In2O3 composites were successfully synthesized via situ growth method. Phase structure, morphology, microstructure and property of the products were investigated by X-ray diffraction (XRD), TG-DTA, field emission scanning electron microscopy (FESEM), energy-dispersive spectrometry (EDS), transmission electron microscope (TEM) and photoluminescence (PL). Results show that the core-shell structures consist of spindle-like ZnO with about 800 nm in length and 200 nm in diameter, and In2O3 particles with a diameter of 50 nm coated on the surface of ZnO uniformly. HMTA plays an important role in the formation of core-shell structures and the addition of In2O3 has a great effect on PL spectrum. Possible mechanism for the formation of core-shell structures is also proposed in this paper.  相似文献   

8.
唐欣月  高红  武立立  温静  潘思明  刘欣  张喜田 《中国物理 B》2015,24(2):27305-027305
One-dimensional(ID) In2O3(ZnO)m superlattice nanobelts are synthesized by a chemical vapor deposition method.The formation of the In2O3(ZnO)m superlattice is verified by the high-resolution transmission electron microscopy images.The typical zigzag boundaries could be clearly observed.An additional peak at 614 cm-1 is found in the Raman spectrum,which may correspond to the superlattice structure.The study about the electrical transport properties reveals that the In2O3(ZnO)m nanobelts exhibit peculiar nonlinear I-V characteristics even under the Ohmic contact measurement condition,which are different from the Ohmic behaviors of the In-doped ZnO nanobelts.The photoelectrical measurements show the differences in the photocurrent property between them,and their transport mechanisms are also discussed.  相似文献   

9.
Two-dimensional transition metal dichalcogenides heterostructures have stimulated wide interest not only for the fundamental research,but also for the application of next generation electronic and optoelectronic devices.Herein,we report a successful two-step chemical vapor deposition strategy to construct vertically stacked van der Waals epitaxial In2Se3/MoSe2 heterostructures.Transmission electron microscopy characterization reveals clearly that the In2Se3 has well-aligned lattice orientation with the substrate of monolayer MoSe2.Due to the interaction between the In2Se3 and MoSe2 layers,the heterostructure shows the quenching and red-shift of photoluminescence.Moreover,the current rectification behavior and photovoltaic effect can be observed from the heterostructure,which is attributed to the unique band structure alignment of the heterostructure,and is further confirmed by Kevin probe force microscopy measurement.The synthesis approach via van der Waals epitaxy in this work can expand the way to fabricate a variety of two-dimensional heterostructures for potential applications in electronic and optoelectronic devices.  相似文献   

10.
Orthorhombic Bi2S3 with different morphologies was successfully synthesized by the acid-catalyst hydrothermal reactions of bismuth nitrate (Bi(NO3)3) and thiourea (NH2CSNH2) solutions containing different amounts of hydroxyethyl cellulose (HEC). Phase, morphologies, and optical properties were characterized by X-ray diffraction, selected area electron diffraction, scanning and transmission electron microscopy, and ultraviolet-visible spectroscopy. The products, hydrothermally synthesized in the HEC-free, 0.25 g HEC-added, 0.5 g HEC-added and 1.00 g HEC-added solutions, were respectively proved to be orthorhombic Bi2S3 irregular nanorods, complete urchin-like colonies of regular nanorods, incomplete urchin-like colonies of regular nanorods, and highly crystalline regular nanorods growing along the [001] direction. Tauc band gaps of the orthorhombic Bi2S3 nanorods, synthesized in the HEC-free, 0.25 g HEC-added, and 1.00 g HEC-added solutions were determined to be 3.0, 1.75 and 1.8 eV, respectively. Formation mechanism of orthorhombic Bi2S3 nanorods, synthesized in the HEC-free and HEC-added solutions, was also discussed at great detail.  相似文献   

11.
葛振华  张波萍  于昭新  刘勇  李敬锋 《物理学报》2012,61(4):48401-048401
以机械合金化法(MA)结合放电等离子烧结技术(SPS)制备了Bi2S3多晶块体热电材料. 研究了MA过程中干磨转速、湿磨时间和湿磨介质对Bi2S3多晶热电材料电传输性能的影响. 分析了样品的物相, 观察了显微组织, 测试了电传输性能和热传输性能. 研究表明, 以无水乙醇为湿磨介质时, 随着湿磨时间的延长, 出现了微量Bi2O3第二相, 样品的晶粒尺寸减小, 电阻率大幅增加, 功率因子下降. 以丙酮为湿磨介质时, 虽然不存在微氧化反应, 但是由于样品中存在大量孔洞, 导致功率因子降低. 425 r/min 干磨15 h后未湿磨的样品在573 K取得最大的ZT值0.25, 是目前文献报道的最高值.  相似文献   

12.
Epitaxial In2O3 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates by metalorganic chemical vapor deposition (MOCVD). The films were deposited at different substrate temperatures (450-750 °C). The film deposited at 650 °C has the best crystalline quality, and observation of the interface area shows a clear cube-on-cube epitaxial relationship of In2O3(1 0 0)||YSZ(1 0 0) with In2O3[0 0 1]||YSZ[0 0 1]. The Hall mobility of the single-crystalline In2O3 film deposited at 650 °C is as high as 66.5 cm2 V−1 s−1 with carrier concentration of 1.5 × 1019 cm−3 and resistivity of 6.3 × 10−3 Ω cm. The absolute average transmittance of the obtained films in the visible range exceeds 95%.  相似文献   

13.
The valence band electronic structures of Mn- and/or Fe-doped In2O3, i.e., In2O3:Mn, In2O3:Fe, and In2O3:(Mn, Fe), are investigated by photoemission yield measurements. Significant changes are observed in the threshold energy of photoemission, depending on the doped magnetic ions, which indicates that an additional occupied band appears above the top of the valence band of In2O3 owing to doping with Mn and/or Fe ions. It is confirmed that the order of the threshold energies of photoemission, EPET, is EPET(In2O3:Mn)<EPET(In2O3:(Mn, Fe))<EPET(In2O3:Fe)<EPET(In2O3). To gain a better understanding of these results, first-principles molecular orbital calculations are also carried out, which successfully explain the observed changes in the photoemission threshold energies.  相似文献   

14.
Surface properties of indium subselenide (In4Se3) were studied. It was confirmed, that the superstructure of this crystal is characterized by nanowire-like cylindrical clusters with diameter dimensions of about 20 nm and stairs along the a-axis up to 5 nm, depending on the cleavage conditions.  相似文献   

15.
Nanoleaf-like Bi2S3 thin films were deposited on indium tin oxide (ITO) glass using Bi(NO3)3 and Na2S2O3 as precursors by a cathodic electrodeposition process. The as-deposited thin films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and photoluminescence spectrum (PL). The influence of precursor solution mole concentration ratios [Bi(NO3)3]/[Na2S2O3] on the phase compositions, morphologies and photoluminescence properties of the obtained thin films were investigated. Results show that a uniform Bi2S3 thin film with nanoleaf structure can be obtained with the precursor solution concentration ratio [Bi(NO3)3]/[Na2S2O3] = 1:7. The as-prepared thin films exhibit blue-green photoluminescence properties under ultraviolet light excitation. With the increase of concentration ratios [Bi(NO3)3]/[Na2S2O3] in the deposition solution, the crystallizations and PL properties of Bi2S3 thin films are obviously improved.  相似文献   

16.
Arsenic trisulphide (As2S3) thin films have been deposited onto stainless steel and fluorine doped tin oxide (FTO) coated glass substrates by electrodeposition technique using arsenic trioxide (As2O3) and sodium thiosulphate (Na2S2O3) as precursors and ethylene diamine tetracetic acid (EDTA) as a complexing agent. Double exposure holographic interferometry (DEHI) technique was used to determine the thickness and stress of As2S3 thin films. It was observed that the thickness of the thin film increases whereas film stress to the substrate decreases with an increase in the deposition time. X-ray diffraction and water contact angle measurements showed polycrystalline and hydrophilic surface respectively. The bandgap energy increases from 1.82 to 2.45 eV with decrease in the film thickness from 2.2148 to 0.9492 μm.  相似文献   

17.
Optoelectronics research requires cheap materials with a broad spectrum of optical, electronic, and structural properties. The class of Heusler compounds and ternary structures provide many possibilities for finding alternative group IV and III–V semiconductor compounds. This study introduces wider band gap materials for use in solar cells as an alternative to cadmium sulfide buffer layers. The buffer layer is inserted between the absorber layer (p-type) and the transparent window layer (n-type) to enhance the maximum amount of light transmission. Reasonable calculations are reported for the band gaps of copper-containing materials: LiCuS, BaCu2S2, and Li2CuSb. Previous optical analysis measurements of these films determined that the band gaps were 1.8 and 1.9 eV for BaCu2S2 and LiCuS, respectively. In general, semiconductor compounds have been studied theoretically, but there are major differences between the experimental and theoretically calculated band gaps. A suitable calculation method for semiconductor compounds is described in this study. For the first time, calculations based on the Engel and Vosko method are introduced for these semiconductor compounds. This method yields band gaps that are comparable to the experimental values, which facilitate the development of microscopic analyses of these compounds. Direct band gaps of 1.15 and 1.7 eV were obtained for BaCu2S2 and LiCuS, respectively, whereas the indirect band gap was 0.7 eV for Li2CuSb.  相似文献   

18.
With Maker fringe measurements, the prominent second harmonic generation was observed in the sol-gel-derived Sb2S3 doped silica glasses irradiated by electron beam, which was related to the space-charge electrostatic field that makes the glasses poled and broken the centrosymmetry of the glasses. By sides, the interface of nanoparticles contributed to the second harmonic intensity as well. The second harmonic intensity increased with the increasing of the irradiating current, accelerating voltage and the concentration of the dopant due to the enhanced built-in electrostatic field. The poled region was located in the surface of the sample about several microns by the TSDC measurements. The second harmonic intensity is almost 10 times larger than that of the base glass due to the existence of microcrystal.  相似文献   

19.
Sm2S3 thin films were prepared on Si (1 0 0) substrates using SmCl3 and Na2S2O3 as precursors by liquid phase deposition method on self-assembled monolayers. The influence of the molar concentration ratio of [S2O32−]/[Sm3+] on the phase compositions, surface morphologies and optical properties of the as-deposited films were investigated. The as-deposited Sm2S3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-vis) and photoluminescence spectrum (PL). Results show that it is important to control the [S2O32−]/[Sm3+] during the deposition process and monophase Sm2S3 thin films with orientation growth along (0 1 1) direction can be achieved when [S2O32−]/[Sm3+] = 2.0, pH 3.0, with citric acid as a template agent. The as-deposited thin films exhibit a dense and crystalline surface morphology. Good transmittance in the visible spectrum and excellent absorbency of ultraviolet light of the thin films are observed, and the band gap of the thin films first decrease and then increase with the increase of the [S2O32−]/[Sm3+]. The as-deposited thin films also exhibit red photoluminescence properties under visible light excitation. With the increase of the [S2O32−]/[Sm3+] in the deposition solution, the PL properties of Sm2S3 thin films are obviously improved.  相似文献   

20.
(In1−xFex)2O3 (x = 0.02, 0.05, 0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1−xFex)2O3 powders as a function of Fe concentration and annealing temperature. The X-ray diffraction and high-resolution transmission electron microscopy results confirmed that there were not any Fe or Fe oxide secondary phases in vacuum-annealed (In1−xFex)2O3 samples and the Fe element was incorporated into the indium oxide lattice by substituting the position of indium atoms. The X-ray photoelectron spectroscopy revealed that both Fe2+ and Fe3+ ions existed in the samples. Magnetic measurements indicated that all samples were ferromagnetic with the magnetic moment of 0.49-1.73 μB/Fe and the Curie temperature around 783 K. The appearance of ferromagnetism was attributed to the ferromagnetic coupling of Fe2+ and Fe3+ ions via an electron trapped in a bridging oxygen vacancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号