首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the electrical transport properties of a quantum point contact between a lead and a high Tc superconductor. For this, we use the Hamiltonian approach and non-equilibrium Green functions of the system. The electrical current and the shot noise are calculated with this formalism. We consider dx2−y2dx2y2, dxydxy, dx2−y2+isdx2y2+is and dxy+isdxy+is symmetries for the pair potential. Also we explore the s+−s+ and s++s++ symmetries describing the behavior of the ferropnictides superconductors. We found that for dxydxy symmetry there is not a zero bias conductance peak and for d+isd+is symmetries there is a displacement of the transport properties. From shot noise and current, the Fano factor is calculated and we found that it takes values of effective charge between e and 2e  , this is explained by the diffraction of quasiparticles in the contact. For the s+−s+ and s++s++ symmetries the results show that the electrical current and the shot noise depend on the mixing coefficient, furthermore, the effective electric charge can take values between 0 and 2e, in contrast with the results obtained for s wave superconductors.  相似文献   

2.
We discuss space-time symmetric Hamiltonian operators of the form H=H0+igHH=H0+igH, where H0H0 is Hermitian and gg real. H0H0 is invariant under the unitary operations of a point group GG while HH is invariant under transformation by elements of a subgroup GG of GG. If GG exhibits irreducible representations of dimension greater than unity, then it is possible that HH has complex eigenvalues for sufficiently small nonzero values of gg. In the particular case that HH is parity-time symmetric then it appears to exhibit real eigenvalues for all 0<g<gc0<g<gc, where gcgc is the exceptional point closest to the origin. Point-group symmetry and perturbation theory enable one to predict whether HH may exhibit real or complex eigenvalues for g>0g>0. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries.  相似文献   

3.
Topological phases in (2+1)(2+1)-dimensions are frequently equipped with global symmetries, like conjugation, bilayer or electric–magnetic duality, that relabel anyons without affecting the topological structures. Twist defects are static point-like objects that permute the labels of orbiting anyons. Gauging these symmetries by quantizing defects into dynamical excitations leads to a wide class of more exotic topological phases referred as twist liquids  , which are generically non-Abelian. We formulate a general gauging framework, characterize the anyon structure of twist liquids and provide solvable lattice models that capture the gauging phase transitions. We explicitly demonstrate the gauging of the Z2Z2-symmetric toric code, SO(2N)1SO(2N)1 and SU(3)1SU(3)1 state as well as the S3S3-symmetric SO(8)1SO(8)1 state and a non-Abelian chiral state we call the “4-Potts” state.  相似文献   

4.
We investigate a finite size “double scaling” hypothesis using data from an experiment on a quantum Hall system with short range disorder ,  and . For Hall bars of width w at temperature T   the scaling form is w−μT−κwμTκ, where the critical exponent μ≈0.23μ0.23 we extract from the data is comparable to the multi-fractal exponent α0−2α02 obtained from the Chalker–Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal σ-model with m matter fields [5]. The value ν8=2.60513…ν8=2.60513 of the localisation exponent obtained from the m=8m=8 model is in excellent agreement with the best available numerical value νnum=2.607±0.004νnum=2.607±0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m=9m=9 model, suggesting that the quantum Hall system is not in the same universality class as the CC-model. We discuss the reason this may not be the case, and propose experimental tests to distinguish between the two possibilities.  相似文献   

5.
A family of spherically symmetric solutions with horizon in the model with m  -component anisotropic fluid is presented. The metrics are defined on a manifold that contains a product of n−1n1 Ricci-flat “internal” spaces. The equation of state for any s  -th component is defined by a vector UsUs belonging to Rn+1Rn+1. The solutions are governed by moduli functions HsHs obeying non-linear differential equations with certain boundary conditions imposed. A simulation of black brane solutions in the model with antisymmetric forms is considered. An example of solution imitating M2–M5M2M5 configuration (in D=11D=11 supergravity) corresponding to Lie algebra A2A2 is presented.  相似文献   

6.
7.
We have investigated the magnetotransport and magnetic properties on polycrystalline samples of Sr2−xLaxFeMoO6 (x=0x=0, 0.2, 0.4, 0.6, 0.8 and 1.0). The magnitude of intergrain tunneling magnetoresistance with low magnetic field of 0.88 T for x=0.2x=0.2 and 0.40.4 samples are as large as 5% and 7% at room temperature and 13% and 10% at 10 K, respectively. The increase of coercivity (HcHc), ratio of remanent magnetization with respect to saturation magnetization (Mr/MsMr/Ms), high saturation fields, and reduction of the saturation magnetization indicate that random disorder of spin orientation is mainly responsible for enhancement of the low-field magnetoresistance for samples with x?0.4x?0.4. Whereas rapid drop of HcHc, Mr/MsMr/Ms, MrMr, and saturation fields for samples with x>0.4x>0.4 signifies the growth of antiphase boundary, which gives rise to lower values of low-field MR.  相似文献   

8.
9.
Employing one- plus two-body random matrix ensembles for bosons, temperature and entropy are calculated, using different definitions, as a function of the two-body interaction strength λ   for a system with 10 bosons (m=10m=10) in five single-particle levels (N=5N=5). It is found that in a region λ∼λtλλt, different definitions give essentially the same values for temperature and entropy, thus defining a thermalization region. Also, (m,N)(m,N) dependence of λtλt has been derived. It is seen that λtλt is much larger than the λ values where level fluctuations change from Poisson to GOE and strength functions change from Breit–Wigner to Gaussian.  相似文献   

10.
11.
We consider an extension of the standard model (SM) with three SU(2)SU(2) scalar doublets and discrete S3⊗Z2S3Z2 symmetries. The irreducible representation of S3S3 has a singlet and a doublet, and here we show that the singlet corresponds to the SM-like Higgs and the two additional SU(2)SU(2) doublets forming a S3S3 doublet are inert. In general, in a three scalar doublet model, with or without S3S3 symmetry, the diagonalization of the mass matrices implies arbitrary unitary matrices. However, we show that in our model these matrices are of the tri-bimaximal type. We also analyzed the scalar mass spectra and the conditions for the scalar potential is bounded from below at the tree level. We also discuss some phenomenological consequences of the model.  相似文献   

12.
The large-n expansion is applied to the calculation of thermal critical exponents describing the critical behavior of spatially anisotropic d-dimensional systems at m  -axial Lifshitz points. We derive the leading non-trivial 1/n1/n correction for the perpendicular correlation-length exponent νL2νL2 and hence several related thermal exponents to order O(1/n)O(1/n). The results are consistent with known large-n expansions for d  -dimensional critical points and isotropic Lifshitz points, as well as with the second-order epsilon expansion about the upper critical dimension d?=4+m/2d?=4+m/2 for generic m∈[0,d]m[0,d]. Analytical results are given for the special case d=4d=4, m=1m=1. For uniaxial Lifshitz points in three dimensions, 1/n1/n coefficients are calculated numerically. The estimates of critical exponents at d=3d=3, m=1m=1 and n=3n=3 are discussed.  相似文献   

13.
14.
Let MM be a connected complex projective manifold such that c1(T(1,0)M)=0c1(T(1,0)M)=0. If MM admits a holomorphic Cartan geometry, then we show that MM is holomorphically covered by an abelian variety.  相似文献   

15.
The Leslie–Ericksen coefficients of a thermotropic nematic are determined by using an approximate solution of the Fokker–Planck equation for the one-particle distribution function over orientations of the nematic molecules. The results show that the well-known Doi–Edwards theory of the dynamical properties of nematics leads to a qualitatively wrong result for the Leslie angle. The “isotropic medium - nematic” (I–NIN) transition induced by the shear flow is considered. When the temperature decreases, the I–NIN transition in the shear flowing system takes place at the temperature T1T1 higher than the temperature TcTc of the equilibrium transition in the motionless system. The interface boundary in this case is parallel to the plane formed by the flow velocity and its gradient. When the shear flowing nematic phase is heated, the N–INI transition occurs at another temperature T2T2, and the following inequalities T1>T2>TcT1>T2>Tc hold. In this case the boundary between the isotropic and nematic phases is perpendicular to the flow velocity. Thus, unlike the equilibrium phase transition, a temperature hysteresis of the phase transition is expected.  相似文献   

16.
We have studied the anisotropic two-dimensional nearest-neighbor Ising model with competitive interactions in both uniform longitudinal field HH and transverse magnetic field ΩΩ. Using the effective-field theory (EFT) with correlation in cluster with N=1N=1 spin we calculate the thermodynamic properties as a function of temperature with values HH and ΩΩ fixed. The model consists of ferromagnetic interaction JxJx in the xx direction and antiferromagnetic interaction JyJy in the yy direction, and it is found that for H/Jy∈[0,2]H/Jy[0,2] the system exhibits a second-order phase transition. The thermodynamic properties are obtained for the particular case of λ=Jx/Jy=1λ=Jx/Jy=1 (isotropic square lattice).  相似文献   

17.
We address the question of thermodynamical evolution of regular spherically symmetric cosmological black holes with de Sitter center. Space–time is asymptotically de Sitter as r→0r0 and as r→∞r. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress–energy tensor. In the range of masses Mcr1?M?Mcr2Mcr1?M?Mcr2 it describes a regular cosmological black hole with three horizons, an internal horizon rara, a black hole horizon rb>rarb>ra, and a cosmological horizon rc>rbrc>rb. Thermodynamical preference for a final product of evaporation is a double-horizon (ra=rbra=rb) black hole remnant with the positive specific heat.  相似文献   

18.
Using a simple Landau model, we discuss the different possibilities of generating magnetic effects at a second-order transition for films. Varying the sample size dd and/or surface coupling γγ one can decrease or increase substantially the surface critical temperature TsTs and the saturation magnetization MsMs. In the case of γ>0γ>0, MsMs and TsTs decrease from the bulk values as the film thickness is reduced. These theoretical results are in nice agreement with the experimental data on superconducting MgB2MgB2 thin films. By contrast, for γ<0γ<0, an enhancement of both quantities is expected. This extraordinary transition has rarely been observed experimentally and, usually, the situation is far from being clear. We analyze a new experiment on NiFe2O4NiFe2O4 ultra-thin films, where a very strong enhancement of the saturation magnetization is observed.  相似文献   

19.
20.
The effect of Gd substitution in M-type strontium hexaferrites has been examined in two series of samples, (Sr1-xGdx)O·5.25(Sr1-xGdx)O·5.25Fe2O3Fe2O3 and Sr1-xGdxFe12-xCoxO19Sr1-xGdxFe12-xCoxO19, both prepared by the ceramic method, where x=0–0.40x=00.40. The samples have been characterized by XRD, VSM and SEM-EDAX techniques. All substituted samples present primarily the hexaferrite structure. Sample (Sr0.95Gdx0.05)O·5.25(Sr0.95Gdx0.05)O·5.25Fe2O3Fe2O3 is single phase. Formation of impurity phases is affected by stoichiometry and presence of Co. In Sr–Gd samples, coercivity showed a maximum value of 305 kA/m (3.8 kOe) for x=0.20x=0.20, while remanence and saturation magnetization did not decrease. Coercivity and magnetization in the Sr–Gd–Co series decreased steadily with substitution degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号