首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mn和N共掺ZnO稀磁半导体薄膜的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
使用对Zn2N3:Mn薄膜热氧化的方法成功制备了高含N量的Mn和N共掺ZnO的稀磁半导体薄膜.在没有N离子共掺的情况下,ZnO:Mn薄膜的铁磁性非常微弱;如果进行N离子的共掺杂,就会发现ZnO:Mn薄膜在室温下表现出非常明显的铁磁性,饱和离子磁矩为0.23 μB—0.61 μB.这说明N的共掺激发了ZnO:Mn薄膜中的室温铁磁性,也就是受主的共掺引起的空穴有利于ZnO中二价Mn离子的铁磁性耦合,这和最近的相关理论研究符合很好. 关键词: 磁性半导体 受主掺杂 空穴媒介的铁磁性  相似文献   

2.
采用射频磁控溅射法在石英玻璃衬底上制备了ZnO:Mn薄膜, 结合N+ 注入获得Mn-N共掺ZnO薄膜, 进而研究了退火温度对其结构及室温铁磁性的影响. 结果表明, 退火后ZnO:(Mn, N) 薄膜中Mn2+和N3-均处于ZnO晶格位, 没有杂质相生成. 退火温度的升高 有助于修复N+注入引起的晶格损伤, 同时也会让N逸出薄膜, 导致受主(NO)浓度降低. 室温铁磁性存在于ZnO:(Mn, N)薄膜中, 其强弱受NO浓度的影响, 铁磁性起源可采用束缚磁极化子模型进行解释.  相似文献   

3.
Magnetic oxide semiconductors, for example the highly transparent and intrinsically n-type conducting zinc oxide doped with the 3d transition metal Co (ZnO:Co), are promising for the emerging field of spintronics [1]. We investigated n-conducting ZnO:Co thin films with a Co content of nominal 0.02, 0.20, or 2.00 at. %. The substitution of Co cations in the tetrahedral sites of wurtzite ZnO with Zn was confirmed at low temperature by the 1.877 eV photoluminescence between crystal field split d-levels of Co2+ (d7) ions. Based on theoretical studies, it is predicted that the formation of electron levels with zinc interstitials (IZn) or hole levels with zinc vacancies (VZn) is necessary to induce ferromagnetism, whereas the formation of electron levels with oxygen vacancies (VO) is detrimental for ferromagnetism in ZnO:Co [2]. Cobalt generates a hole level in ZnO [3]. We investigated the generation of electron levels in n-conducting ZnO:Co in dependence on the Co content by means of deep level transient spectroscopy (DLTS). However, because of the ambiguous categorization of deep defects in n-conducting ZnO (VO, IZn), an optimization of defect-related ferromagnetism in ZnO:Co is not possible at the moment. PACS 78.30.Fs; 91.60.Ed; 91.60.Mk  相似文献   

4.
Carbon-doped In2O3 thin films exhibiting ferromagnetism at room temperature were prepared on Si (100) substrates by the rf-magnetron co-sputtering technique. The effects of carbon concentration as well as oxygen atmosphere on the ferromagnetic property of the thin films were investigated. The saturated magnetizations of thin films varied from 1.23 to 4.86 emu/cm3 with different carbon concentrations. The ferromagnetic signal was found stronger in samples with higher oxygen vacancy concentrations. In addition, deposition temperature and different types of substrates also affect the ferromagnetic properties of carbon-doped In2O3 thin films. This may be related to the oxygen vacancies in the thin film system. The experiment suggests that oxygen vacancies play an important role in introducing ferromagnetism in thin films.  相似文献   

5.
Well-aligned ZnO nanorods and Mn-doped ZnO nanorods are fabricated on Si (1 0 0) substrate according to the contribution of Zn metal catalysts. Scanning electron microscopy and high-resolution transmission electron microscopy images indicate that the influence of Zn catalyst on the properties of ZnO can be excluded and the growth of ZnO nanorods follows a vapor-liquid-solid and self-catalyzed model. Mn-doped ZnO nanorods show a typical room temperature ferromagnetic characteristic with a saturation magnetization (MS) of 0.273μB/Mn. Cathodoluminescence suggests that the ferromagnetism of Mn-doped ZnO nanorods originates from the Mn2+-Mn2+ ferromagnetic coupling mediated by oxygen vacancies. This technique provides exciting prospect for the integration of next generation Si-technology-based ZnO spintronic devices.  相似文献   

6.
We report on the reversible manipulation of room temperature ferromagnetism in Fe (5%) doped In2O3 polycrystalline magnetic semiconductor. The X-ray diffraction and photoemission measurements confirm that the Fe ions are well incorporated into the lattice, substituting the In3+ ions. The magnetization measurements show that the host In2O3 has a diamagnetic ground state, while it shows weak ferromagnetism at 300 K upon Fe doping. The as-prepared sample was then sequentially annealed in hydrogen, air, vacuum and finally in air. The ferromagnetic signal shoots up by hydrogenation as well as vacuum annealing and bounces back upon re-annealing the samples in air. The sequence of ferromagnetism shows a close inter-relationship with the behavior of oxygen vacancies (Vo). The Fe ions tend to a transform from 3+ to 2+ state during the giant ferromagnetic induction, as revealed by photoemission spectroscopy. A careful characterization of the structure, purity, magnetic, and transport properties confirms that the ferromagnetism is due to neither impurities nor clusters but directly related to the oxygen vacancies. The ferromagnetism can be reversibly controlled by these vacancies while a parallel variation of carrier concentration, as revealed by resistance measurements, appears to be a side effect of the oxygen vacancy variation.  相似文献   

7.
《Current Applied Physics》2015,15(10):1256-1261
P-type conductivity in MOCVD grown ZnO was obtained by directional thermal diffusion of arsenic from semi-insulating GaAs substrate. The films were single crystalline in nature and oriented along (002) direction. Ab initio calculations in the framework of density functional theory have been carried out with different chemical states of arsenic in ZnO. Present calculations suggested AsZn–2VZn defect is a shallow acceptor and results in ferromagnetism in ZnO. The magnetic measurements of the samples indeed showed ferromagnetic ordering at room temperature. X-ray photoelectron spectra confirmed the presence of AsZn and VZn. The core level chemical shift in binding energy of AsZn indicated the formation of AsZn–2VZn. Diffused arsenic substitutes zinc atom and creates additional zinc vacancies. The zinc vacancies, surrounding the oxygen atoms, result in unpaired O 2p electrons which in turn induce ferromagnetism in the samples.  相似文献   

8.
This paper reported that the Mn-doped TiO2 films were prepared by radio frequency (RF) magnetron cosputtering. X-ray diffraction measurements indicate that the samples are easy to form the futile structure, and the sizes of the crystal grains grow big and big as the Mn concentration increases. X-ray photoemlssion spectroscopy measurements and high resolution transmission electron microscope photographs confirm that the manganese ions have been effectively doped into the TiO2 crystal when the Mn concentration is lower than 21%. The magnetic property measurements show that the Ti1-xMnxO2 (x = 0.21) films are ferromagnetic at room temperature, and the saturation magnetization, coercivity, and saturation field are 16.0 emu/cm^3, 167.5 × 80 A/m and 3740 × 80 A/m at room temperature, respectively. The room-temperature ferromagnetism of the films can be attributed to the new futile Ti1-xMnxO2 structure formed by the substitution of Mn^4+ for Ti^4+ into the TiO2 crystal .lattice, and could be explained by O vacancy (Vo)-enhanced ferromagnetism model.  相似文献   

9.
According to first-principles density functional calculations,we have investigated the magnetic properties of Mn-doped GaN with defects,Ga 1-x-y V Gx Mn y N 1-z-t V Nz O t with Mn substituted at Ga sites,nitrogen vacancies V N,gallium vacancies V G and oxygen substituted at nitrogen sites.The magnetic interaction in Mn-doped GaN favours the ferromagnetic coupling via the double exchange mechanism.The ground state is found to be well described by a model based on a Mn 3+-d 5 in a high spin state coupled via a double exchange to a partially delocalized hole accommodated in the 2p states of neighbouring nitrogen ions.The effect of defects on ferromagnetic coupling is investigated.It is found that in the presence of donor defects,such as oxygen substituted at nitrogen sites,nitrogen vacancy antiferromagnetic interactions appear,while in the case of Ga vacancies,the interactions remain ferromagnetic;in the case of acceptor defects like Mg and Zn codoping,ferromagnetism is stabilized.The formation energies of these defects are computed.Furthermore,the half-metallic behaviours appear in some studied compounds.  相似文献   

10.
We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co:ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co:ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn:ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co:ZnO and O-capped Mn:ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co(I)↔Co(II)+e- CB and Mn(III)↔Mn(II)+h+ VB are energetically favorable, consistent with strong hybridization of Co (Mn) with the conduction (valence) band of ZnO. In contrast, the resonances Mn(I)↔Mn(II)+e- CB and Co(III)↔Co(II)+h+ VB are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co:ZnO (Mn:ZnO) is mediated by electrons (holes). PACS 75.50.Pp  相似文献   

11.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

12.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

13.
This paper reports that the(Ga,Co)-codoped ZnO thin films have been grown by inductively coupled plasma enhanced physical vapour deposition.Room-temperature ferromagnetism is observed for the as-grown thin films.The x-ray absorption fine structure characterization reveals that Co 2+ and Ga 3+ ions substitute for Zn 2+ ions in the ZnO lattice and exclude the possibility of extrinsic ferromagnetism origin.The ferromagnetic(Ga,Co)-codoped ZnO thin films exhibit carrier concentration dependent anomalous Hall effect and positive magnetoresistance at room temperature.The mechanism of anomalous Hall effect and magneto-transport in ferromagnetic ZnO-based diluted magnetic semiconductors is discussed.  相似文献   

14.
Mn–N co-doped ZnO films with wurtzite structure were fabricated by RF magnetron sputtering together with the ion-implantation technique. Then a post-annealing at 650 °C for 10 min in a N2 atmosphere was performed to activate the implanted N+ ions and recover the crystal quality, and a p-type ZnO:Mn–N film with a hole concentration of about 2.1×1016 cm?3 was obtained. It is found that the Mn mono-doped ZnO film only exhibits paramagnetic behavior, while after N+-implantation, it shows ferromagnetism at 300 K, and the magnetization of the ZnO:Mn–N films can be further enhanced by thermal annealing due to the activation of the N acceptors. Our experimental results confirm that the codoping N acceptors are favorable for ferromagnetic ordering of Mn2+ ions in ZnO, which is consistent with the recent theoretical calculations.  相似文献   

15.
The ferromagnetic properties of Mn- and Co-doped Cu2O with copper and oxygen vacancies (VCu and VO) are studied by first-principles calculations. The results indicate that Mn-doped Cu2O has an antiferromagnetic state in the near configuration, while it has a ferromagnetic state for the far configuration. On the contrary, Co-doped Cu2O possess a ferromagnetic state regardless of the distance between the two Co atoms. The observed ferromagnetism can be attributed to the 90° ferromagnetic super-exchange mechanism. The presence of VO can enhance the ferromagnetism, whereas VCudepresses it.  相似文献   

16.
Fabrication of Eu3+-doped ZnO nanoparticles by laser ablation in liquid medium is reported. Sintered disks made of mixed powders of ZnO and Eu2O3 are used for targets, and surfactant of sodium dodecyl sulfate or LiOH is included in solution. Round-shaped nanoparticles with the diameter of 5??30?nm are synthesized. When the ZnO host is photoexcited, broad green photoluminescence (PL) of oxygen vacancies in the ZnO host as well as red PL of Eu3+ is observed at room temperature. The red PL peak of Eu3+ included in the ZnO host lattice is different from that of the source material of Eu2O3. Energy transfer from the ZnO host to Eu3+ is demonstrated in site-selectively excited PL spectra and its excitation spectra. This result shows that the liquid-phase laser ablation is useful for doping active centers into nanoparticles.  相似文献   

17.
采用离子束增强沉积方法在Si和SiO2/Si衬底上制备In-N共掺杂ZnO薄膜(INZO),溅射靶是用ZnO和2 atm% In2O3粉体均匀混合并压制而成,在氩离子溅射ZnO靶的同时,氮、氩混合离子束垂直注入沉积的薄膜.实验结果显示INZO薄膜具有(002)的择优取向,并且为p型导电,电阻率最低为0.9Ωcm.薄膜在氮气、氧气气氛下退火,对薄膜的结构和电学特性与成膜和退火条件的关系进行了分析. 关键词: 氧化锌薄膜 p型掺杂 离子束增强沉积  相似文献   

18.
We report the microstructural and magnetic properties of transition (3d) and rare earth (4f) metal substituted into the Ax:Zn1?xO (A=Mn, Gd and Mn/Gd) nanocrystal samples synthesized by solgel method. The structural properties and morphology of all samples have been analysed using X-ray diffraction (XRD) method and scanning electron microscopy. The impurity phase in the XRD patterns for all samples is not seen, except (Mn/Gd):ZnO sample where a very weak secondary phase of Gd2O3 is observed. Due to the large mismatch of the ionic radii between Mn2+ and Gd3+ ions, the strain inside the matrix increases, unlike the crystallite size decreases with the substitution of Mn and Gd into ZnO system. A couple of additional vibration modes due to the dopant have been observed in Raman spectrum. The magnetic properties have been studied by vibrating sample magnetometer. The magnetic hysteresis shows that Mn:ZnO and Gd:ZnO have soft ferromagnetic (FM) behaviour, whereas (Mn/Gd):ZnO has strong FM behaviour at room temperature (RT). The enhancement of ferromagnetism (FM) in (Mn/Gd):ZnO sample might be related to short-range FM coupling between Mn2+ and Gd3+ ions via defects potential and/or strain-induced FM coupling due to the expansion lattice by doping. The experimental results indicate that RTFM can be achieved by co-substitution of 3d and 4f metals in ZnO which can be used in spintronics applications.  相似文献   

19.
Influence of Co doping for In in In2O3 matrix has been investigated to study the effect on magnetic vs. electronic properties. Rietveld refinement of X-ray diffraction patterns confirmed formation of single phase cubic bixbyite structure without any parasitic phase. Photoelectron spectroscopy and refinement results further revealed that dopant Co2+ ions are well incorporated at the In3+ sites in In2O3 lattice and also ruled out formation of cluster in the doped samples. Magnetization measurements infer that pure In2O3 is diamagnetic and turns to weak ferromagnetic upon Co doping. Hydrogenation further induces a huge ferromagnetism at 300 K that vanishes upon re-heating. Experimental findings confirm the induced ferromagnetism to be intrinsic, and the magnetic moments to be associated with the point defects (oxygen vacancies Vo) or bound magnetic polarons around the dopant ions.  相似文献   

20.
1 MeV Cu2+ ions have been implanted into un-doped ZnO and Ga-doped ZnO films with a dose of 1 × 1017 ions/cm2 at room-temperature. Cu ion-implanted Ga-doped ZnO had ferromagnetism at room-temperature and the saturation magnetization of this sample was estimated to be 0.12 μB per Cu, while the Cu ion-implanted un-doped ZnO did not show ferromagnetic behavior. Near-edge X-ray fine structure (NEXAFS) spectroscopy revealed that a partial amount of implanted Cu ions existed as Cu2+ (d9) state in Ga-doped ZnO film. On the other hand, almost Cu atoms existed as Cu1+ (d10) state in un-doped ZnO film. However, the subsequent annealing at temperature above 800 °C on this ferromagnetic sample induced the annihilation of ferromagnetism due to the formation of non-ferromagnetic Cu2O phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号