首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the framework of density functional theory (DFT), we calculated the electronic structures and the quadrupole coupling constants (CQ) in the pristine and carbon doped (C-doped) beryllium oxide nanotubes (BeONTs) for the first time. The pristine and C-doped forms of representative (10, 0) zigzag and (5, 5) armchair models of BeONTs were considered in this study. The structures are allowed to relax by performing all atomic optimization. Formation energies indicate that C-doping of Be atom (CBe form) could be more favorable than C-doping of O atom (CO form) in both zigzag and armchair BeONTs. Gap energies and dipole moments detected the effects of dopant in the (5, 5) armchair models; however, those parameters did not detect any significant changes in the C-doped (10, 0) zigzag BeONT models. The calculated nuclear quadrupole coupling constant for the Be and O nuclei reveal that the pristine models can be divided into layers of nuclei with an equivalent electrostatic environment such that those nuclei at the ends of tubes end up in a strong electrostatic environment when compared to the other nuclei along the length of tubes. Comparison with the available data on the pristine BeONTs reveals the influence of C-doping on the CQ parameters of Be and O atoms in the C-doped structures. For most lattice sites, the degree of influence on the CQ parameters of the zigzag model is larger than that of the armchair model. The calculations were performed based on the B3LYP DFT method and 6-31G standard basis sets using the Gaussian 09 program package.  相似文献   

2.
In this work, an armchair model of the (4,4) boron phosphide nanotubes (BPNTs) with a 1-nm length and consisting of 32 B and 32 P atoms is considered to study the influence of doping three atoms of aluminum in sites of boron (B3AlPNTs) and three atoms of nitrogen in sites of phosphors (BP3NNTs) on the electrostatic structure properties. The mouths of nanotubes are capped by hydrogen atoms in order to saturate the dangling bonds of the boundaries and to decrease the calculation time. The structures of BPNTs, B3AlPNTs and BP3NNTs are optimized by performing the level of density functional theory (DFT) using 6-31G? basis set. The optimized structures are used for calculating the chemical shielding (CS) tensors and nuclear magnetic resonance parameters such as isotropic chemical shielding (CSI) and anisotropic chemical shielding (CSA). The results reveal that in both models of B3AlPNTs and BP3NNTs by doping N atoms the chemical shielding parameters of P and B atoms, which are directly connected to the Al and N atoms decreased and the other sites significantly changed.  相似文献   

3.
The total carbo-mer of single-walled carbon nanotubes (C-SWCNTs) are constructed by inserting two sp carbon atoms into each C-C bond in pristine single-walled carbon nanotubes (SWCNTs). The geometric, mechanical and electronic properties for these novel structures are investigated by self-consistent-field crystal calculations. The calculated zigzag and chiral C-SWCNTs are all small gap semiconductors, whereas the metallic property is still kept in the armchair C-SWCNT. The calculated Young's moduli of C-SWCNTs are smaller than those of SWCNTs. Our calculations show that the zigzag C-SWCNTs have higher mobility than the corresponding SWCNTs. Moreover, the calculated mobility of the C-SWCNTs has a periodic change with the change of the tube diameters.  相似文献   

4.
The electronic structures and physical properties of zigzag BC2N (n,0; n = 4–10) and armchair BC2N (n,m; n = m = 4–10) nanotubes (type III) are studied by using density functional theory with the generalized gradient approximation. From a comparison of the binding energies, it is inferred that in the large diameter BC2N nanotubes, the zigzag form is thermally more stable than the armchair form. BC2N nanotubes (with the exception of (4,0) which is conductor) are gapless semiconductors. Depend on the chirality index, the zigzag forms of BC2N nanotubes have narrower band gap than the armchair form. Semiconductor character in the studied BC2N nanotubes is due to contribution of p electrons in the Fermi level. Mulliken population analyses show that significant amounts of electron charge are transferred between atoms; which suggests the existence of polar covalent bonds in the BC2N nanotubes.  相似文献   

5.
本文基于密度泛函理论计算分析了手性参数为(17,0)、(20,0)、(26,0) (10,10)、(12,12)、(15,15)的碳化硅纳米管的能带图,态密度及主要光学性质。结果表明:锯齿型与扶手椅型碳化硅纳米管均具有明显的半导体性质;在相近直径下,扶手椅型碳化硅纳米管带隙宽度要大于锯齿型碳化硅纳米管的带隙宽度;碳化硅纳米管的光吸收峰在100nm~200nm之间,可用于制作紫外线探测器件。  相似文献   

6.
We calculated, using spin polarized density functional theory, the electronic properties of zigzag (10,0) and armchair (6,6) semiconductor silicon carbide nanotubes (SiCNTs) doped once at the time with boron, nitrogen, and oxygen. We have looked at the two possible scenarios where the guest atom X (B, N, O), replaces the silicon XSi, or the carbon atom XC, in the unit cell. We found that in the case of one atom B @ SiCNT replacing a carbon atom position annotated by BC exhibits a magnetic moment of 1 μB/cell in both zigzag and armchair nanotubes. Also, B replacing Si, (BSi), induce a magnetic moment of 0.46 μB/cell in the zigzag (10,0) but no magnetic moment in armchair (6,6). For N substitution; (NC) and (NSi) each case induce a magnetic moment of 1 μB/cell in armchair (6,6), while NSi give rise to 0.75 μB/cell in zigzag (10,0) and no magnetic moment for NC. In contrast the case of OC and OSi did not produce any net magnetic moment in both zigzag and armchair geometries.  相似文献   

7.
The structural and electronic properties of semiconductors (Si and Ge) and metal (Au and Tl) atoms doped armchair (n, n) and zigzag (n, 0); n=4–6, single wall carbon nanotubes (SWCNTs) have been studied using an ab-initio method. We have considered a linear chain of dopant atoms inside CNTs of different diameters but of same length. We have studied variation of B.E./atom, ionization potential, electron affinity and HOMO–LUMO gap of doped armchair and zigzag CNTs with diameter and dopant type. For armchair undoped CNTs, the B.E./atom increases with the increase in diameter of the tubes. For Si, Ge and Tl doped CNTs, B.E./atom is maximum for (6, 6) CNT whereas for Au doped CNTs, it is maximum for (5, 5) CNTs. For pure CNTs, IP decreases slightly with increasing diameter whereas EA increases with diameter. The study of HOMO–LUMO gap shows that on doping metallic character of the armchair CNTs increases whereas for zigzag CNTs semiconducting character increases. In case of zigzag tubes only Si doped (5, 0), (6, 0) and Ge doped (6, 0) CNTs are stable. The IP and EA for doped zigzag CNTs remain almost independent of tube diameter and dopant type whereas for doped armchair CNTs, maximum IP and EA are observed for (5, 5) tube for all dopants.  相似文献   

8.
Within tight-binding model, the band gaps of armchair and zigzag carbon nanotubes (CNTs) under both uniaxial tensile and torsional strains have been studied. It is found that the changes in band gaps of CNTs depend strongly on the strain type. The torsional strain can induce a band gap for armchair CNTs, but it has little effect on band gap of the zigzag CNTs. While the tensile strain has great effect on band gap of zigzag CNTs, but it has no effect on that of the armchair CNTs. More importantly, when both the tensile and torsional strains are simultaneously applied to the CNTs, the band gap changes of armchair CNTs are not equal to a simple sum over those induced separately by uniaxial tensile and torsional strains. There exists a cooperative effect between two kinds of strains on band gap changes of armchair CNTs. But for zigzag CNTs, the cooperative effect was not found. Analytical expressions for the band gaps of armchair and zigzag CNTs under combined uniaxial–torsional strains have been derived, which agree well with the numerical results.  相似文献   

9.
Structure and electronic properties of GaN nanotubes (GaNNTs) are investigated by using ab initio density functional theory. By full optimization, the optimized structures (bond-lengths and angles between them) of zigzag GaNNTs (n,0) and armchair GaNNTs (n,n) (4<n<11) are calculated. The difference between nitrogen ring diameter and gallium ring diameter (buckling distance) and semiconducting energy gap in term of diameter for zigzag and armchair GaNNTs have also been calculated. We found that buckling distance decreases by increasing nanotube diameter. Furthermore, we have investigated the effects of nitrogen and gallium vacancies on structure and electronic properties of zigzag GaNNT (5,0) using spin dependent density functional theory. By calculating the formation energy, we found that N vacancy in GaNNT (5,0) is more favorable than Ga vacancy. The nitrogen vacancy in zigzag GaNNT induces a 1.0μB magnetization and makes a polarized structure. We have shown that in polarized GaNNT a flat band near the Fermi energy splits to occupied spin up and unoccupied spin down levels.  相似文献   

10.
The electronic transport properties of single-walled ZnO nanotubes with different chiralities are investigated by nonequilibrium Green's function combined with density functional theory. In this paper we consider three representative ZnO nanotubes, namely (3, 3) armchair, (5, 0) zigzag, and (4, 2) chiral, with a similar diameter of about 5.4 Å. Short nanotubes exhibit good conductance behavior. As the tube length increases, the conductance decreases at low bias and the nanotubes indicate semiconducting behavior. The current-voltage characteristics of the nanotubes longer than 3 nm depend weakly on the length of the tubes. The armchair and chiral ZnO nanotubes with the same length and diameter have almost overlapped current-voltage curves. The electron transport behaviors are analyzed in terms of the transmission spectra, density of states and charge population of these nanotubes. The results indicate that the resonant peaks above the Fermi level are responsible for electric currents. However, the zigzag ZnO nanotubes exhibit asymmetric current-voltage curves attributed to the built-in polarization field and give larger current than the armchair and chiral nanotubes at the same bias. The features explored here strongly suggest that the ZnO nanotubes are stable, flexible structures, which are valuable in Nano-Electromechanical System.  相似文献   

11.
In this work, we apply first-principles methods to investigate the stability and electronic structure of BC4N nanostructures which were constructed from hexagonal graphite layers where substitutional nitrogen and boron atoms are placed at specific sites. These layers were rolled up to form zigzag and armchair nanotubes, with diameters varying from 7 to 12 Å, or cut and bent to form nanocones, with 60° and 120° disclination angles. The calculation results indicate that the most stable structures are the ones which maximize the number of B–N and C–C bonds. It is found that the zigzag nanotubes are more stable than the armchair ones, where the strain energy decreases with increasing tube diameter D, following a 1/D 2 law. The results show that the 60° disclination nanocones are the most stable ones. Additionally, the calculated electronic properties indicate a semiconducting behavior for all calculated structures, which is intermediate to the typical behaviors found for hexagonal boron nitride and graphene.  相似文献   

12.
在紧束缚近似下,利用常量相互作用模型和Landauer-Bütticker公式,计算了扶手椅型和金属锯齿型碳纳米管量子点的电导。发现,根据碳纳米管量子点的长度的不同,扶手椅型碳纳米管量子点的电导可以具有两电子或四电子的壳层结构。而锯齿型碳纳米管量子点的电导却仅有四电子的壳层结构,与长度无关;这些理论结果与之前的实验结果符合的很好。  相似文献   

13.
We performed density functional theory (DFT) calculations to investigate the properties of silicon-doped (Si-doped) models of representative (4,4) armchair and (6,0) zigzag aluminum phosphide nanotubes (AlPNTs). The structures were allowed to relax and the chemical shielding (CS) parameters were calculated for the atoms of optimized structures. The results indicated that the band gap energies and dipole moments detect the effects of dopant. The CS parameters also indicated that the Al and P atoms close to the Si-doped region are such reactive atoms, which make the Si-doped AlPNTs more reactive than the pristine AlPNTs. Moreover, replacement of P atom by the Si atom makes AlPNT more reactive than the replacement of Al atom by the Si atom.  相似文献   

14.
The structural, electronic and magnetic properties of pristine and oxygen-adsorbed (3,0) zigzag and (6,1) armchair graphene nanoribbons have been investigated theoretically, by employing the ab initio pseudopotential method within the density functional scheme. The zigzag nanoribbon is more stable with antiferromagnetically coupled edges, and is semiconducting. The armchair nanoribbon does not show any preference for magnetic ordering and is semiconducting. The oxygen molecule in its triplet state is adsorbed most stably at the edge of the zigzag nanoribbon. The Stoner metallic behaviour of the ferromagnetic nanoribbons and the Slater insulating (ground state) behaviour of the antiferromagnetic nanoribbons remain intact upon oxygen adsorption. However, the local magnetic moment of the edge carbon atom of the ferromagnetic zigzag ribbon is drastically reduced, due to the formation of a spin-paired C-O bond.  相似文献   

15.
袁剑辉  袁晓博 《物理学报》2008,57(6):3666-3673
用分子动力学方法研究了端口接枝不同数量羟基对扶手椅型和锯齿型单壁碳纳米管弹性模量的影响.结果表明,未接枝的扶手椅型(5, 5),(10,10)管和锯齿型(9, 0),(18, 0)管杨氏模量分别为948,901和804,860GPa.在接枝2—8个羟基情况下,锯齿型单壁碳纳米管拉伸杨氏模量基本不随接枝数量增加发生变化,而扶手椅单壁碳纳米管则不同,接枝状态下的弹性模量比未接枝状态小很多,但接枝一定数量后,其杨氏模量又略增到某一稳定值.分别从接枝后碳纳米管变形电子密度等值线结构、C—C键长和系统结合能变化规律等方面,对单壁碳纳米管弹性模量的接枝效应进行了分析. 关键词: 碳纳米管 羟基 接枝效应 杨氏模量  相似文献   

16.
Equilibrium molecular dynamics based Einstein relation with an appropriate definition for integrated heat current (i.e., with modified energy moment) are combined to quantify the thermal conductivity of individual single-walled carbon nanotubes, armchair, zigzag and chiral tubes. The thermal conductivity has been investigated as a function of three parameters, tube radius, length and chirality at and near room temperature with Brenner potential model. Thermal conductivity is found to have unusually high value and varies with radius, length and chirality of tubes. Also the thermal conductivity at temperature range from 50 to 100 K is found to have a maximum value. For 12.1 nm tube length, the thermal conductivity has converging trend which its value dependents on the tube radius and chirality. Tubes with large radius have lower values of thermal conductivity. Furthermore, the results show that armchair tubes have large values of the thermal conductivity comparing with zigzag and chiral tubes. It seems possible to uncover carbon nanotubes thermal properties based on measurements having heat dependence by adding another methods for calculations.  相似文献   

17.
The buckling behavior of single-layered silicon carbide nanosheets (SLSiCNSs) is investigated by employing an atomistic finite element model. Preserving the discrete nature of nanosheets, the beam elements are used to model the Si–C bounds. The effects of aspect ratio and boundary conditions on the stability of zigzag and armchair SLSiCNSs have been studied. Based on the results, it is observed that the buckling forces of small sheets are strongly size-dependent. However, the size-dependent behavior will diminish for larger sheets. Comparing the buckling force of armchair and zigzag nanosheets with same geometries and boundary conditions shows that the buckling force is independent of chirality.  相似文献   

18.
We simulate the twist of carbon nanotubes using atomic molecular dynamic simulations. The ultimate twist angle per unit length and the deformation energy are calculated for nanotubes of different geometries. It is found that the thick tube is harder to be twisted while the thin tube exhibits higher ultimate twisting ratio. For multi-walled nanotubes, the zigzag tube is found to be able to stand more deformation than the armchair one. We observed the surface transformation during twisting. Formation of structural defects is observed prior to fracture.  相似文献   

19.
We report dielectric function related optical properties namely dielectric constant, static dielectric constant, and absorption coefficients of C-substituted hexagonal boron nanotubes. The optical properties were computed for parallel and perpendicular polarized light in the framework of density functional theory. In this regard, three models of BNTs namely armchair (3,3), zigzag (5,0), and chiral (4,2) have been undertaken for probing the effect of carbon impurity. Our calculations show high dielectric constant of armchair and chiral BNTs for parallel polarized light and magnitude becomes smaller for higher impurity concentration, while zigzag BNT exhibits reverse trend for high impurity concentration. For perpendicular polarized light, the magnitude of dielectric constant ε 1(ω) is decreased and shifts at higher frequencies. The absorption is revealed highest for armchair followed by zigzag and chiral BNTs independent of impurity concentration. The intensity of absorption gets weaken for higher concentration. The chiral BNTs show smaller but uniform absorption in smaller frequency range results in uniform field emission. These findings are also compared with available experimental and theoretical results. These metallic nanotubes are promising candidate as interconnects for nanodevices as well as field emission devices.  相似文献   

20.
First-principles calculations have been employed to investigate the structural transformation and direct to indirect band gap transition of ZnO nanotubes under uniaxial strain. The results show that armchair and zigzag nanotubes can be transformed to each other via unusual fourfold-coordinated structures under the applied strain. Both the armchair and zigzag nanotubes exhibit direct band gap while the unusual fourfold-coordinated ones display indirect band gap. The origin of such a direct-to-indirect band gap transition is explained based on the analyses of atomic orbital contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号