首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
采用密度泛函方法(B3LYP)在6-311+G(d,p)基组水平上研究了CH3CH2S自由基H迁移异构化以及裂解反应的微观动力学机理. 在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了在200~2000 K温度区间内的速率常数kTST和kCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 研究结果表明, CH3CH2S自由基1,2-H迁移、1,3-H迁移、C—C键断裂和β-C—H键断裂反应的势垒ΔE≠分别为149.74, 144.34, 168.79和198.29 kJ/mol. 当温度低于800 K时, 主要发生1,2-H迁移反应, 高于1800 K时, 主要表现为C—C键断裂反应, 在1300—1800 K范围内, 1,3-H迁移反应是优势通道, 在计算的整个温度段内, β-C—H键断裂反应可以忽略.  相似文献   

2.
刘艳  任宏江  刘亚强  王渭娜 《化学学报》2009,67(22):2541-2548
采用量子化学QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)方法研究了H2FCS单分子分解反应的微观动力学性质, 构建了反应势能剖面. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT), 分别计算了在200~3000 K温度范围内的速率常数kTST、kCVT和kCVT/SCT. 计算结果表明, H2FCS可经过不同的反应通道生成10种小分子产物, 脱H反应和HF消去反应为标题反应的主反应通道, 其中HF消去反应产物HCS可由两条反应通道生成. 在200~3000 K温度区间内得到三条反应通道的表观反应速率常数三参数表达式分别为 , 和 . 速率常数计算结果显示, 量子力学隧道效应在低温区间对反应速率常数的影响显著, 而变分效应在计算温度范围内可以忽略.  相似文献   

3.
在G3B3,CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理.在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型,通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系.在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量,得到了反应势能面.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了在200~3000K温度范围内的速率常数kTST,kCVT和kCVT/SCT.研究结果表明,该反应体系共存在5个反应通道,其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低,为主要反应通道.动力学数据也表明,该通道在200~3000K计算温度范围内占绝对优势,拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T)cm3·molecule-1·s-1.  相似文献   

4.
王文亮  刘艳  王渭娜  罗琼  李前树 《化学学报》2005,63(17):1554-1560
采用密度泛函方法(MPW1PW91)在6-311G(d,p)基组水平上研究了CH3S自由基H迁移反应CH3S→CH2SH (R1), 脱H2反应CH3S→HCS+H2 (R2)以及脱H2产物HCS异构化反应HCS→CSH (R3)的微观动力学机理. 在QCISD(t)/6- 311++G(d,p)//MPW1PW91/6-311G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了各反应在200~2000 K温度区间内的速率常数kTSTkCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 结果表明, 反应 R1, R2 和R3的势垒△E分别为160.69, 266.61和241.63 kJ/mol, R1为反应的主通道. 低温下CH3S比CH2SH稳定, 高温时CH2SH比CH3S更稳定. 另外, 速率常数计算结果显示, 量子力学隧道效应在低温段对速率常数的计算有显著影响, 而变分效应在计算温度段内对速率常数的影响可以忽略.  相似文献   

5.
在G3B3, CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理. 在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型, 通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系. 在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量, 得到了反应势能面. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT), 分别计算了在200~3000 K温度范围内的速率常数kTST, kCVT和kCVT/SCT. 研究结果表明, 该反应体系共存在5个反应通道, 其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低, 为主要反应通道. 动力学数据也表明, 该通道在200~3000 K计算温度范围内占绝对优势, 拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T) cm3&;#8226;molecule-1&;#8226;s-1.  相似文献   

6.
在MPW1PW91/6-311G(d,p)水平上优化了标题反应各驻点物种的几何构型,并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证.采用QCISD(T)/6-311G(d,p)方法对所有驻点及反应路径的部分选择点进行单点能校正,分别构建了CH3SO+HO2反应体系的单、三重态反应势能剖面.研究结果表明,CH3SO+HO2反应体系存在6条反应通道7条路径,优势通道(1)R→3IM→P1(CH3SOH+3O2)发生在三重态势能面上,此通道包含两条路径,其表观活化能分别为12.01和-30.04kJ?mol-1,主路径(2)R→3IM→3TS2→P1(CH3SOH+3O2)是一个无势垒氢迁移过程.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了主路径(2)在200~2500K温度范围内的速率常数kTST,kCVT和kCVT/SCT,在此温度区间内的表观反应速率常数三参数表达式为kCVT/SCT=4.08×10-24T3.13exp(8012.2/T)cm3imolecule-1is-1,具有负温度系数效应.速率常数计算结果显示,变分效应在计算温度段内影响较小,而量子力学隧道效应在低温段有显著影响.  相似文献   

7.
采用量子化学的QCISD(T)/6-311 G(d,p)//BHandHLYP/6-311G(d,p)方法研究了氟代甲烷CH4-nFn(n=1~3)与CH3自由基氢抽提反应的微观动力学性质.并利用Polyrate程序分别计算了3个反应在200~3000K范围内的速率常数.计算结果表明,R1a,R2a和R3三个反应路径的反应能量分别为-12.7,-9.5和11.8kJ/mol,相应的能垒依次为67.0,62.2和67.5kJ/mol.在437K时,kCVT/SCT分别为6.72×10-19,8.01×10-18和8.82×10-20cm3/(molecule.s).计算结果还表明,在低温段反应的量子隧道效应显著,在计算温度范围内变分效应对反应速率常数的影响可以忽略.  相似文献   

8.
CH3S自由基H迁移异构化及脱H2反应的直接动力学研究   总被引:5,自引:0,他引:5  
王文亮  刘艳  王渭娜  罗琼  李前树 《化学学报》2005,63(17):1554-1560,F0005
采用密度泛函方法(MPW1PW91)在6.311G(d,p)基组水平上研究了CH3S自由基H迁移反应CH3S→CH2SH(R1),脱H2反应CH3S→HCS+H2(R2)以及脱H2产物HCS异构化反应HCS→CSH(R3)的微观动力学机理.在QCISD(t)/6.311++G(d,p)//MPW1PW91/6.311G(d,p)+ZPE水平上进行了单点能校正.利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了各反应在200-2000K温度区间内的速率常数K^TST和k^CVT,同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数萨k^CVT/SCT.结果表明,反应R1,R2和R3的势垒△E^≠分别为160.69,266.61和241.63kJ/mol。R1为反应的主通道.低温下CH3S比CH2SH稳定,高温时CH2SH比CH3S更稳定.另外,速率常数计算结果显示,量子力学隧道效应在低温段对速率常数的计算有显著影响,而变分效应在计算温度段内对速率常数的影响可以忽略.  相似文献   

9.
CH2O+H→CHO+H2反应途径和变分速率常数计算研究   总被引:1,自引:0,他引:1  
采用QCISD/6-311G^** 从头算方法,优化了吸氢反应CH2O+H→CHO+H2的反应物、过渡态、产物几何结构,得出该反应的正、逆反应活化位垒分别是35.4kJ/mol和98.8kJ/mol。沿IRC分析指出该反应是一个C—H键断裂和H—H键生成协同进行的反应,而且在反应途径上存在一个引导反应进行的振动模式,这一反应模式引导反应进行的区间在—0.4~0.55(amu)^1/2之间。在300~3200K温度范围内,运用变分过渡态理论(CVT),计算了该反应的速率常数。  相似文献   

10.
用QC ISD(T)/6-311 G(3DF,3PD)/MP2/6-311G(D,P)方法研究了H原子与CH3NH2的抽氢反应过程。该反应包含两个反应通道:H分别从CH3基团(R1)和NH2(R2)基团上抽氢。R1势垒比R2势垒低3.42kJ/mol,表明R1是主反应通道。在从头算的基础上,用变分过渡态理论(CVT)加小曲率隧道效应(SCT)研究了各反应温度范围为200~4000K内的速率常数,所得结果与实验值符合的很好。动力计算表明,在所研究的温度范围内,变分效应对速率常数的计算影响不大,而在低温范围内,隧道效应起了很重要的作用。  相似文献   

11.
NH2 + HNCO反应机理的从头计算   总被引:4,自引:1,他引:4       下载免费PDF全文
在6-311G(d,p)基组水平上, 采用全电子的UMP2和UQCISD(T)方法对自由基NH2和HNCO反应机理进行了研究, 结果表明, 反应存在如下两条反应通道: NH2 + HNCO→NH3 + NCO (1)和NH2 + HNCO→N2H3 + CO (2). 反应(1)是吸氢反应, QCISD(T,full)// MP2(full)/6-311G(d,p) 计算位垒是29.04 kJ/mol. 与实验估计值29.09 kJ/mol一致. 在反应的温度区间(2300~2700 K),传统过渡态理论得出的速率常数值的范~围是1.68×1011~3.29×1011cm3·mol-1·s-1, 支持了反应速率常数应小于等于5.0×1011cm3·mol-1·s-1的实验结论. 对反应(1), 理论研究还得出反应物分子可通过分子间作用生成氢键复合物(HBC), 其能量相对于反应物降低32.41 kJ/mol. 反应(2)是一个可经过顺式或反式方式进行的分步反应, 在反应分子间第1步生成N—N键, 再经过一个C—N键断裂过渡态生成产物. 反应(2)控速步骤的位垒为92.79 kJ/mol(顺式)或147.43 kJ/mol(反式). 反应(2)位垒高于反应(1).  相似文献   

12.
在QCISD(T)/6-311++G(d,p)和B3LYP/6-311++G(d,p)级别上研究了HNCS与Cl原子的反应机理. 并应用经典过渡态理论和正则变分过渡态理论结合小曲率隧道效应, 计算了200-2500 K温度范围内各反应通道的速率常数. 结果表明, HNCS与Cl原子反应存在3个反应通道. 当温度低于294 K时, 生成HCl+NCS的夺氢反应(a)是优势通道, 温度高于294 K时, 生成HNC(Cl)S的加成反应(c)为主反应通道, Cl进攻N的反应通道(b)因能垒较高而难以进行.  相似文献   

13.
贫氢分子CnH是燃烧火焰、行星大气中的重要的中间体.这些分子与其它一些分子或自由基的反应在星际化学中起着非常重要的作用.虽然这些分子的电子结构和光谱性质已经进行了广泛的研究,但是研究这些反应的机理和动力学性质也是亟需的.因此,我们采用直接动力学方法对线性分子丁二炔自由基C4H(CCCCH)夺氢气(H2)分子中HAT的反应的微观机理和动力学性质进行了理论研究.本研究分别在BB1K/6-311+G(2d,2p),B3LYP/6-311+G(2d,2p)和M06-2x/6-311+G(2d,2p)水平上优化得到了各稳定点的结构及振动频率.为了得到更为可靠的反应能量和势能面信息,在BB1K/6-311+G(2d,2p)优化结构的基础上用CCSD(T)/aug-cc-pVTZ水平进行了单点能量校正.对于此反应研究了两条不同的氢吸附通道,C4H(C1C2C3C4H)中的C1和C4分别吸氢,即通道1(R1)和通道2(R2).计算得出:通道1和通道2的能垒分别为3.58 kcal/mol和26.56 kcal/mol,结果表明C4H中C1端吸氢是主要通道.反应过程中的电子转移可以为理解氢原子转移(HAT)提供重要的线索,因此,我们利用NBO对反应过程中的电子转移行为进行了详细的分析.本工作运用经典过渡态理论(VTST)与变分过渡态理论(CVT)和变分过渡态理论结合小曲率隧道效应校正(CVT/SCT)的方法计算了该反应在40~1000 K温度区间的速率常数.除对于最低频率的配分函数采用了阻尼内转动近似外,其它频率都采用谐振子模型处理.计算得到的总的CVT/SCT反应速率常数与已有的实验值符合得很好.我们还提供了40~1000K温度范围内的三参数Arrhenius表达式.这些公式有利于今后在较宽的温度范围内迄今没有实验数据的反应的研究.  相似文献   

14.
采用密度泛函B3LYP/6-311G(d,p)方法对CH3F与C2H3的反应体系进行了理论研究,获得了反应的势能面信息及可能的微观机理.在QCISD(T)/6-311++G(d,p)水平上精确计算了各反应物种的单点能.结果表明,除抽提氢反应外,标题反应还存在抽提氟(R1)、消氟化氢(R2)、消氢(R3)和自由基形成(R4)四类反应.在QCISD(T)/6-311++G(d,p)//B3LYP/6-311G(d,p)水平上,R1,R2,R3和R4反应的能垒分别是163.9,152.2,209.8和224.2kJ·mol-1,相应反应能为-56.6,-164.3,-2.7和-156.0kJ·mol-1,所有反应均放热,为热力学允许的反应.  相似文献   

15.
CH2O+O[^3P]→CHO+OH反应途径和变分速率常数   总被引:1,自引:0,他引:1  
采用QCISD/6-311G犤d,p犦从头算方法,优化了吸氢反应CH2O+O犤3P犦→CHO+OH的反应物、过渡态和产物的几何结构,并用QCISD(t,full)/6-311G//QCISD/6-311G方法对各驻点进行了单点校正,得出正逆反应的活化位垒分别为38.86kJ·mol-1和67.23kJ·mol-1.IRC(内禀反应坐标)分析指出,该反应是一个C-H键断裂和H-O键生成协同进行的反应,而且在反应途径上存在一个引导反应进行的振动模式,其引导反应进行s区间为-0.4~0.75(amu)1/2.在1300~2270K温度范围内运用改进的变分过渡态理论(ICVT),计算了反应速率常数,与实验结果相当一致.  相似文献   

16.
HNCO+HCO→NCO+CH2O氢转移反应的从头算及动力学研究   总被引:2,自引:0,他引:2  
在UMP2(Full)/6-311G(d,p)计算水平上,优化了标题反应的反应物、过渡态、产物的几何结构,沿最小能量途径讨论了异氰酸(HNCO)和甲酰自由基(HCO)发生氢转移反应位能面上驻点的结构以及相互作用分子结构变化.指出该反应是一个N-H键断裂和C-H键生成的协同反应.进一步采用UQCISD(T,Full)方法对反应途径上的驻点进行了单点能量校正,得出该反应的计算位垒是91.47 kJ/mol,与实验值108.92 kJ/mol接近在500~2500K实验温度范围内,运用变分过渡态理论(CVT)计算得到的速率常数与实验观测值进行了比较  相似文献   

17.
采用双水平直接动力学方法对C2H3与CH3F氢抽提反应进行了研究. 在QCISD(T)/6-311++G(d, p)//B3LYP/6-311G(d, p)水平上, 计算的三个反应通道R1、R2和R3的能垒(ΔE)分别为43.2、43.9和44.1 kJ·mol-1, 反应热为-38.2 kJ·mol-1. 此外, 利用传统过渡态理论(TST)、正则变分过渡态理论(CVT)和包含小曲率隧道效应(SCT)的CVT, 分别计算了200-3000 K温度范围内反应的速率常数kTST、kCVT和kCVT/SCT. 结果表明: (1) 三个氢抽提反应通道的速率常数随温度的增加而增大, 其中变分效应的影响可以忽略, 隧道效应则在低温段影响显著; (2) R1反应是主反应通道, 但随着温度的升高, R2反应的竞争力增大, 而R3反应对总速率常数的影响很小.  相似文献   

18.
CH2O+O[3P]→CHO+OH反应途径和变分速率常数   总被引:1,自引:0,他引:1  
采用QCISD/6-311G[d,p]从头算方法,优化了吸氢反应CH2O+O[3P]→CHO+OH的反应物、过渡态和产物的几何结构,并用QCISD(t,full)/6-311G**//QCISD/6-311G**方法对各驻点进行了单点校正,得出正逆反应的活化位垒分别为38.86kJ@mol-1和67.23kJ@mol-1.IRC(内禀反应坐标)分析指出,该反应是一个C-H键断裂和H-O键生成协同进行的反应,而且在反应途径上存在一个引导反应进行的振动模式,其引导反应进行s区间为-0.4~0.75(amu)1/2.在1300~2270K温度范围内运用改进的变分过渡态理论(ICVT),计算了反应速率常数,与实验结果相当一致.  相似文献   

19.
齐斌  晁余涛 《化学学报》2007,65(19):2117-2123
在6-311+G(2d,2p)水平下, 采用密度泛函理论(DFT)的B3LYP方法, 研究了Criegee 自由基CH2O2与H2O的反应. 结果表明反应存在三个通道: CH2O2+H2O®HOCH2OOH (R1); CH2O2+H2O®HCO+OH+H2O (R2); CH2O2+H2O®HCHO+H2O2 (R3), 各通道的势垒高度分别为43.35, 85.30和125.85 kJ/mol. 298 K下主反应通道(R1)的经典过渡态理论(TST)与变分过渡态理论(CVT)的速率常数kTSTkCVT均为2.47×10-17 cm3•molecule-1•s-1, 而经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT 5.22×10-17 cm3•molecule-1•s-1. 另外, 还给出了200~2000 K 温度范围内拟合得到的速率常数随温度变化的三参数Arrhenius方程.  相似文献   

20.
过氧烷基自由基分子内氢迁移是低温燃烧反应中的一类重要基元反应. 本文用等键反应方法计算了该类反应的动力学参数. 所有反应物、过渡态、产物的几何结构均在B3LYP/6-311+G(d,p)水平下优化得到. 本文提出了用过渡态反应中心几何结构守恒作为反应类判据, 并将该分子内氢迁移反应分为四类, 包括(1,3)、(1,4)、(1,5)、(1,n) (n=6, 7, 8)氢迁移类. 分别将这4 类反应类中最小反应体系作为类反应的主反应, 并分别在B3LYP/6-311+G(d,p)低水平和CBS-QB3 高水平下得到其近似能垒和精确能垒. 其余氢迁移反应作为目标反应, 在B3LYP/6-311+G(d,p)低水下计算得到其近似能垒, 再采用等键反应方法校正得到目标反应的精确反应势垒和精确速率常数. 研究表明, 采用等键反应方法只需在低水平用从头算计算就可以得到大分子反应体系的高精度能垒和速率常数值, 且本文按等键反应本质的分类方法更能揭示反应类的本质, 并对反应类的定义给出了客观标准. 本文的研究为碳氢化合物低温燃烧模拟中重要的过氧烷基分子内氢迁移反应提供了准确的动力学参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号