首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
提出利用Legendre小波函数去获得第一类Fredholm积分方程的数值解,函数定义在区间[0,1)上,然后结合Garlerkin方法将原问题转化为线性代数方程组.而且还对算法的收敛性和误差进行了分析,最后通过两个数值算例验证了所提算法的可行性及有效性.  相似文献   

2.
建立了求解具有非局部守恒条件的一维波动方程数值解的第一类Chebyshev小波配置法.利用移位的第一类Chebyshev多项式,推导出Riemann-Liouville意义下第一类Chebyshev小波函数的分数次积分公式.利用分数次积分公式和二维Cheyshev小波配置法,将波动方程求解问题转化为代数方程组求解.数值算例表明该方法具有较高的精度.  相似文献   

3.
陈丽贞  许传炬 《数学研究》2011,44(3):219-233
我们提出和分析了一种求解Stokes方程的数值方法.新方法基于空间上的Legendre谱离散,时间上则采用投影/方向分裂格式.更确切地说,时间离散的出发点是旋度形式的压力校正投影法,在此基础上进一步应用方向分裂法,把速度和压力方程分裂为一系列一维的椭圆型子问题.然后生成的这些一维子问题用Legendre谱方法进行空间离散.另外,我们证明了全离散格式的稳定性.一些数值实验验证了收敛性和方法的有效性.  相似文献   

4.
求解第一类积分方程的正则化—小波方法及其数值试验   总被引:1,自引:0,他引:1  
1 方法的描述 第一类(Fredholm)积分方程是指形如 (1.1)的积分方程,其中核k(x,y)和右端函数f(x)给定,u(x)是未知函数.许多物理、化学、力学和工程应用问题都能导致第一类积分方程.求解第一类积分方程的一个本质性困难是方程的不适定性,即解的存在性、唯一性和稳定性遭到破坏.常用的数值方法有奇异值分解(SVD)方法、Tikhonov正则化方法、投影方法、正则化-样条方法、再生核方法等.本文提出一种新的正则化-小波方法,在第一类积分方程有多个解时,可以求出具有最小范数的数值解;如果原积分方程有唯一解,则所得的数值解收敛于准确解.数值试验表明,该方法是可行的. 我们在L~2[a,b]中考虑第一类(Fredholm)积分方程,即假设方程(1.1)中积分算子K∈L~2([a,b]×[a,b])及右端f(x)∈L~2[a,b]给定.为保证数值求解算法的稳定性,我们先用正则化方法处理该方程,将不适定问题化为泛函极值问题来求解,然后利用多重正交样条小波基构造求解格式.由于我们给出了直接计算低阶的多重正交样条小波基函数的一般公式,使得解法可以在计算机迅速实现.  相似文献   

5.
该文的主要目的是通过使用Legendre配置方法和正则化策略来求解带有噪声数据的第一类Volterra积分方程,并给出该方法收敛性分析的严格数学证明.数值实验表明了该方法的有效性.  相似文献   

6.
Legendre小波函数被用于逼近非线性Volterra积分微分方程组的解,方法是基于Legendre小波的性质构建相应的积分算子矩阵,进而将原问题转化为关于未知解系数的线性方程组,通过求解该方程组,即得原问题的数值解.数值结果表明所述方法对于求解此类问题是行之有效的.  相似文献   

7.
求解对流扩散方程的Haar小波方法   总被引:2,自引:0,他引:2  
石智  邓丽媛 《应用数学》2008,21(1):98-104
本文用Haar小波求解对流扩散方程,将满足初始和边界条件的常系数偏微分方程简化为较简单的代数方程组进行求解.实例说明了这种方法具有收敛速度快和计算容易的特点,同时又避免了用Daubechies小波求解微分方程需要计算相关系数的麻烦.本文所使用的方法可以求解一般的微(积)分方程.  相似文献   

8.
提出了一种基于Legendre正交函数求解对流扩散方程的无条件稳定方法.方法将对流扩散方程中的各项基于Legendre基函数进行展开,利用各阶基函数的正交性质和Galerkin方法消除方程中的时间微分项,形成可求解的系数矩阵方程,最后通过求解各阶展开系数可重构数值结果.为全面评价该方法,分别设计了具有精确解的一维方程和具有精细结构的二维问题等2个算例.计算结果表明:方法能够实现无条件稳定,且具有较高精度,同时在求解含有精细结构的对流扩散问题时具有明显的效率优势.  相似文献   

9.
本文利用Legendre多项式求解一类变分数阶微分方程.结合Legendre多项式,给出三种不同类型的微分算子矩阵.通过微分算子矩阵,将原方程转化一系列矩阵的乘积.最后离散变量,将矩阵的乘积转化为代数方程组,通过求解方程组,从而得到原方程的数值解.数值算例验证了本方法的高度可行性和准确性.  相似文献   

10.
文章采用Legendre—tau方法对一阶双曲方程进行数值求解,此方法可以被有效实施,且可以得到L^2模意义下的最优误差估计,将以往对此类问题的收敛阶估计由O(N^1-τ)提高到O(N^-τ),改进了原有的理论分析结果,数值算例证实了此方法的有效性.  相似文献   

11.
An effective method based upon Legendre multiwavelets is proposed for the solution of Fredholm weakly singular integro-differential equations. The properties of Legendre multiwavelets are first given and their operational matrices of integral are constructed. These wavelets are utilized to reduce the solution of the given integro-differential equation to the solution of a sparse linear system of algebraic equations. In order to save memory requirement and computational time, a threshold procedure is applied to obtain the solution to this system of algebraic equations. Through numerical examples, performance of the present method is investigated concerning the convergence and the sparseness of the resulted matrix equation.  相似文献   

12.
In this paper, a finite Legendre expansion is developed to solve singularly perturbed integral equations, first order integro-differential equations of Volterra type arising in fluid dynamics and Volterra delay integro-differential equations. The error analysis is derived. Numerical results and comparisons with other methods in literature are considered.   相似文献   

13.
In this study, a Legendre collocation matrix method is presented to solve high-order Linear Fredholm integro-differential equations under the mixed conditions in terms of Legendre polynomials. The proposed method converts the equation and conditions to matrix equations, by means of collocation points on the interval [−1, 1], which corresponding to systems of linear algebraic equations with Legendre coefficients. Thus, by solving the matrix equation, Legendre coefficients and polynomial approach are obtained. Also examples that illustrate the pertinent features of the method are presented and by using the error analysis, the results are discussed.  相似文献   

14.
Ma  Xiaohua  Huang  Chengming 《Numerical Algorithms》2021,88(4):1571-1593
Numerical Algorithms - This work is to analyze a Legendre collocation approximation for third-kind Volterra integro-differential equations. The rigorous error analysis in the $L^{\infty }$ and...  相似文献   

15.
In this paper, we present a new approach to resolve linear and nonlinear weakly-singular Volterra integro-differential equations of first- or second-order by first removing the singularity using Taylor’s approximation and then transforming the given first- or second-order integro-differential equations into an ordinary differential equation such as the well-known Legendre, degenerate hypergeometric, Euler or Abel equations in such a manner that Adomian’s asymptotic decomposition method can be applied, which permits convenient resolution of these equations. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained demonstrate this approach is indeed practical and efficient.  相似文献   

16.
In this paper, we introduce a set of functions called fractional-order Legendre functions (FLFs) to obtain the numerical solution of optimal control problems subject to the linear and nonlinear fractional integro-differential equations. We consider the properties of these functions to construct the operational matrix of the fractional integration. Also, we achieved a general formulation for operational matrix of multiplication of these functions to solve the nonlinear problems for the first time. Then by using these matrices the mentioned fractional optimal control problem is reduced to a system of algebraic equations. In fact the functions of the problem are approximated by fractional-order Legendre functions with unknown coefficients in the constraint equations, performance index and conditions. Thus, a fractional optimal control problem converts to an optimization problem, which can then be solved numerically. The convergence of the method is discussed and finally, some numerical examples are presented to show the efficiency and accuracy of the method.  相似文献   

17.
In this paper, an improved Legendre collocation method is presented for a class of integro-differential equations which involves a population model. This improvement is made by using the residual function of the operator equation. The error differential equation, gained by residual function, has been solved by the Legendre collocation method (LCM). By summing the approximate solution of the error differential equation with the approximate solution of the problem, a better approximate solution is obtained. We give the illustrative examples to demonstrate the efficiency of the method. Also we compare our results with the results of the known some methods. In addition, an application of the population model is made.  相似文献   

18.
In this article, we present a new numerical method to solve the integro-differential equations (IDEs). The proposed method uses the Legendre cardinal functions to express the approximate solution as a finite series. In our method the operational matrix of derivatives is used to reduce IDEs to a system of algebraic equations. To demonstrate the validity and applicability of the proposed method, we present some numerical examples. We compare the obtained numerical results from the proposed method with some other methods. The results show that the proposed algorithm is of high accuracy, more simple and effective.  相似文献   

19.
The operational Tau method, a well known method for solving functional equations is employed to approximate the solution of nonlinear fractional integro-differential equations. The fractional derivatives are described in the Caputo sense. The unique solvability of the linear Tau algebraic system is discussed. In addition, we provide a rigorous convergence analysis for the Legendre Tau method which indicate that the proposed method converges exponentially provided that the data in the given FIDE are smooth. To do so, Sobolev inequality with some properties of Banach algebras are considered. Some numerical results are given to clarify the efficiency of the method.  相似文献   

20.
This paper proposes two approximate methods to solve Volterra’s population model for population growth of a species in a closed system. Volterra’s model is a nonlinear integro-differential equation on a semi-infinite interval, where the integral term represents the effect of toxin. The proposed methods have been established based on collocation approach using Sinc functions and Rational Legendre functions. They are utilized to reduce the computation of this problem to some algebraic equations. These solutions are also compared with some well-known results which show that they are accurate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号