首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用超声辐照原位乳液聚合方法制备了聚苯乙烯(PS)包覆多壁碳纳米管(MWNTs)复合材料. 用TEM, FTIR, UV, XPS, GPC和TGA研究了复合材料的结构和性能. 结果表明, MWNTs对苯乙烯聚合过程具有抑制作用, 聚苯乙烯包覆MWNTs, 两者之间有较强的相互作用, 使复合材料的热性能得到改善, 起始分解温度从388 ℃提高到422 ℃.  相似文献   

2.
通过α-溴丙酰溴与Z5(季戊四醇与2,2-二羟甲基丙酸缩聚的产物)酯化反应制得超支化原子转移自由基聚合(ATRP)引发剂Z5-B(约含19个引发点).在100℃及CuCl/N,N,N,N",N"-五甲基二亚乙基三胺催化下,用Z5-B引发苯乙烯的ATRP聚合(环己酮为溶剂,体积分数为50%),得到超支化的聚苯乙烯,将溴端基叠氮化后与C60反应,获得超支化聚苯乙烯C60衍生物.该超支化C60衍生物可用于光限制材料.  相似文献   

3.
AB_2型星形杂臂偶氮液晶聚合物的合成及表征   总被引:1,自引:1,他引:1  
通过原子转移自由基聚合(ATRP)与ATRP衍生物化学修饰结合的方法,合成了一系列AB2型星形杂臂偶氮液晶聚合物.其中,A为聚苯乙烯,B为聚6-[4-(4′-甲氧基苯基)偶氮苯氧基己酯](PMMAZO).合成分三步进行.首先,以ATRP方法得到ω-溴聚苯乙烯活性链PS(Br).然后对PS(Br)进行化学改性,得到带两个末端溴原子的聚苯乙烯活性链PS(Br)2·最后,以PS(Br)2作为双官能团大分子引发剂,引发6-[4-(4′-甲氧基苯基)偶氮苯氧基]己酯(MMAZO)发生ATRP聚合,得到星形杂臂PS(PMMAZO)2聚合物.进一步对聚合产物进行了GPC和1H-NMR分析.结果表明合成产物是预期的星形杂臂聚合物,产物分子量可控且分子量分布狭窄.同时,以DSC和POM表征了星形杂臂聚合物的液晶性.  相似文献   

4.
分别以过硫酸钾和偶氮二异丁基脒盐酸盐为引发剂,以聚乙烯吡咯烷酮(PVP)为分散剂,在水中引发苯乙烯聚合制备了2种表面分别带负电性和正电性基团的聚苯乙烯(PS)模板微球.在氨水催化下,利用正硅酸乙酯的水解缩合,形成PS/SiO_2复合微球,去除模板后得到中空SiO_2微球,并对其进行FTIR、电子显微镜、TGA以及氮气吸附等分析表征.结果表明,PS模板微球表面的电性决定了OH-的分布,从而导致PS模板微球表面SiO_2壳层不同的形成机制.当以表面带负电的PS微球为模板时,可得到树莓状的中空SiO_2微球;而以表面带正电的PS微球为模板时,得到是表面光滑的,具有介孔结构的中空SiO_2微球.  相似文献   

5.
利用有机溶剂溶胀磺化聚苯乙烯@二氧化钛(SPS@TiO2)核壳粒子制得二氧化钛/聚苯乙烯(TiO2/PS)双面神(Janus)颗粒, 并在TiO2端进行改性, 得到墨绿色的聚苯胺/聚苯乙烯(PANi/PS) Janus颗粒. 用扫描电子显微镜(SEM)、电子能谱(EDS)、元素分析、透射电子显微镜(TEM)、红外光谱(IR)、热重分析(TGA)、固体紫外-可见分析(UV-Vis)和四探针法考察Janus颗粒组成、微结构和Janus性质. 结果表明, Janus颗粒为雪人状结构, PS端的平均粒径为228 nm, PANi端的平均粒径从TiO2的258 nm增大为295 nm; 并且在EDS谱上可以观察到N元素, 而未观察到Ti元素; 包覆的PANi的质量分数为23.7%. 掺杂后PANi/PS Janus颗粒的导电性能较好, 电导率为0.247 S/cm.  相似文献   

6.
采用分散聚合法成功合成了高掺杂、窄分子量分布的聚苯乙烯-铝纳米粒子(PS-AlNPs)复合材料。采用XRD、FT-IR、GPC、TGA、SEM和TEM等手段对产物的晶体结构、分子结构、PS基体的分子量及分子量分布、热稳定性及形貌等进行了分析测试。结果表明:所得球形复合材料的平均粒径约为1.5μm,聚合过程中AlNPs的晶体结构未见变化,AlNPs掺杂量可高达1.81%,PS基体重均分子量达1.98×105,分子量分布指数为1.21,热稳定性优异。  相似文献   

7.
采用氯甲基化试剂氯甲醚对聚苯乙烯(PS)实施了氯甲基化反应,然后使肉桂酸与氯甲基化聚苯乙烯(CMPS)的苄氯基团在碱性条件下发生亲核取代反应,成功制得了可光交联的光敏聚苯乙烯。利用1H-NMR、FT-IR、UV-Vis、TGA等测试手段对该聚合物的结构和热性能进行了表征及测试。探讨了反应时间对氯甲基化反应和接枝反应的影响。结果表明,合成得到的光敏PS具有良好的溶解性、热性能以及光敏性。  相似文献   

8.
在室温,紫外光照下溶液相中C_(60)与聚苯乙烯的直接反应合成得聚苯乙烯的 C_(60)加合物。衍生物中C_(60)的含量可由C_(60)的投料比来控制。得到了产物经 UV-Vis,FTIR,GPC,TGA及DSC等波谱表片,测得产物的分子量比母体聚苯乙烯的 分子量稍高。对溶液相的反应进行了现场的ESR研究,得到强的PSC_(60)~(-·)的 自由基信号,g值为2.0024。同时对C_(60)和聚苯乙烯混合物固相体系的光照反应 进行了ESR测试。结果表明在反应过程中及最终产物中均存在稳定的C_(60)-高分子 链烃基自由基阴离子RC_(60)~(-·)。表明了反应的自由基机理。  相似文献   

9.
在室温,紫外光照下溶液相中C_(60)与聚苯乙烯的直接反应合成得聚苯乙烯的 C_(60)加合物。衍生物中C_(60)的含量可由C_(60)的投料比来控制。得到了产物经 UV-Vis,FTIR,GPC,TGA及DSC等波谱表片,测得产物的分子量比母体聚苯乙烯的 分子量稍高。对溶液相的反应进行了现场的ESR研究,得到强的PSC_(60)~(-·)的 自由基信号,g值为2.0024。同时对C_(60)和聚苯乙烯混合物固相体系的光照反应 进行了ESR测试。结果表明在反应过程中及最终产物中均存在稳定的C_(60)-高分子 链烃基自由基阴离子RC_(60)~(-·)。表明了反应的自由基机理。  相似文献   

10.
近几年来,可溶性高分子C60衍生物的合成已取得明显的进展.Weis等[1]报道了以C60封端的聚苯乙烯大分子衍生物,Hawker等[2]合成出聚苯乙烯C60的共聚物.这些单取代的C60衍生物很好地保持了C60原有的性质,加工性能和机械性能均较好.唐本忠等[3]用紫外光照射聚碳酸酯和C60溶液或在AIBN存在的条件下加热以上溶液,得到可溶的聚碳酸酯C60衍生物,该法产率很高(可达99%),且简单易行.Patil等[5]也用类似的方法通过自由基聚合将C60接枝到聚烯烃的高分子链上.我们已报道了将C60接枝到聚烯烃上所得到的共聚物的性能[5,6],但C60高分子衍生物的用途尚不清楚.  相似文献   

11.
Electrophilic trisubstituted ethylene monomers, alkyl ring substituted methyl 2‐cyano‐3‐phenyl‐2‐propenoates, RC6H4CH[dbnd]C(CN)CO2CH3, where R is 2‐methyl, 3‐methyl, 4‐methyl, 4‐isopropyl, and 2,5‐dimethyl were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and methyl cyanoacetate, and characterized by CHN elemental analysis, IR, 1H and 13C NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 260–400°C range.  相似文献   

12.

Electrophilic trisubstituted ethylene monomers, ring‐substituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H4CH?C(CN)2 (where R is 2‐methoxy, 3‐methoxy, 4‐methoxy, 4‐ethoxy, 4‐propoxy, and 4‐butoxy), were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High T g of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 290–450°C range.  相似文献   

13.

Electrophilic trisubstituted ethylene monomers, ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH?C(CN)CON(CH3)2 (where R is 3‐benzyloxy, 4‐benzyloxy, 3‐ethoxy‐4‐methoxy, 3‐bromo‐4‐methoxy, 5‐bromo‐2‐methoxy, 2‐chloro‐6‐fluoro) were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

14.

Electrophilic trisubstituted ethylene monomers, akyl and alkoxy ring‐trisubstituted methyl 2‐cyano‐3‐phenyl‐2‐propenoates, RC6H2CH[dbnd]C(CN)CO2CH3, (where R is 2,3‐dimethyl‐4‐methoxy, 2,5‐dimethyl‐4‐methoxy‐, 2,3,4‐trimethoxy‐, 2,4,5‐trimethoxy, 2,4,6‐trimethoxy, and 2,4‐dimethoxy‐3‐methyl), were synthesized by the piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and methyl cyanoacetate, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 283–306°C range.  相似文献   

15.

Electrophilic trisubstituted ethylene monomers, halogen ring‐disubstituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H3CH?C(CN)CON(CH3)2 (where R is 2,3‐dichloro, 2,4‐dichloro, 2,6‐dichloro, 3,4‐dichloro, 3,5‐dichloro, 2,3‐difluoro, 2,4‐difluoro, 2,6‐difluoro, 3,4‐difluoro, 3,5‐difluoro), were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High Tg of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

16.
以过氧化对苯二甲酸二叔丁酯为引发剂, 以一次投料方式, 采用溶液聚合法合成了苯乙烯-N-苯基马来酰亚胺-马来酸酐三元共聚物. 通过控制单体配比, 实现产物中N-苯基马来酰亚胺质量分数在48%~63%之间可调. 采用FTIR, 1H NMR, 13C NMR和GPC技术对三元共聚物的化学组成、链序列结构和分子量进行了测试. 利用FOX方程计算的共聚物NPMI含量与1H NMR核磁测试结果一致. DSC和TGA测试的结果表明, 当N-苯基马来酰亚胺质量分数>48%时, 共聚物的玻璃化转变温度(Tg)从202 ℃提高到215 ℃, 5%热失重温度高于363 ℃, 所以三元聚合物是一种优异的聚合物耐热剂.  相似文献   

17.
Novel copolymers of trisubstituted ethylene monomers, ring-substituted 2-phenyl-1,1-dicyanoethylenes, RC6H3CH═C(CN)2 (where R is 2-bromo,3-bromo, 3-chloro, 2,3-dichloro, 2-chloro-6-fluoro, 2,6-difluoro, 3,4-difluoro, and 3,5-difluoro) and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (AIBN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR, GPC, DSC, and TGA. High T g of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 200–800°C range.  相似文献   

18.
Electrophilic trisubstituted ethylene monomers, halogen ring‐substituted 2‐cyano‐N,N‐dimethyl‐3‐phenyl‐2‐propenamides, RC6H4CH [dbnd]C(CN)CON(CH3)2 (where R is 2‐Br, 3‐Br, 4‐Br, 2‐Cl, 3‐Cl, 4‐Cl, 2‐F, 3‐F, 4‐F), were synthesized by potassium hydroxide catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and N,N‐dimethyl cyanoacetamide, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and styrene were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator, ABCN at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C NMR, GPC, DSC, and TGA. High T g of the copolymers in comparison with that of polystyrene indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 300–450°C range.  相似文献   

19.
Electrophilic trisubstituted ethylene monomers, halogen ring‐disubstituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H3CH?C(CN)2 (where R is 2,3‐diCl, 2,4‐diCl, 2,6‐diCl, 3,4‐diCl, 3,5‐diCl, 2,4‐diF, 2,5‐diF, 2,6‐diF, 3,4‐diF, 3,5‐diF, 2‐Cl, 6‐F) were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐and 13C‐NMR. Novel copolymers of the ethylenes and vinyl acetate were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C‐NMR, GPC, DSC, and TGA. High Tg of the copolymers, in comparison with that of polyvinyl acetate, indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 220–800°C range.  相似文献   

20.

Electrophilic trisubstituted ethylene monomers, alkyl ring‐substituted 2‐phenyl‐1,1‐dicyanoethylenes, RC6H4CH?C(CN)2 (where R is 2‐methyl, 3‐methyl,4‐methyl, 4‐ethyl, 4‐isopropyl, 4‐butyl, and 4‐t‐butyl), were synthesized by piperidine catalyzed Knoevenagel condensation of ring‐substituted benzaldehydes and malononitrile, and characterized by CHN elemental analysis, IR, 1H‐ and 13C‐NMR. Novel copolymers of the ethylenes and vinyl acetate were prepared at equimolar monomer feed composition by solution copolymerization in the presence of a radical initiator (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C‐NMR, GPC, DSC, and TGA. High Tg of the copolymers, in comparison with that of polyvinyl acetate, indicates a substantial decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. The gravimetric analysis indicated that the copolymers decompose in the 190–700°C range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号