首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We derive the generalized dromions of the new(2 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations.The rich soliton and dromion structures for this system are released.  相似文献   

2.
This article is concerned with the extended homogeneous balance method for studying the abundant localized solution structures in the (2 1)-dimensional dispersive long-wave equations uty ηxx (u^2)xy/2=0,ηt (uη u uxy)x=0.Starting from the homogeneous balance method,we find that the richness of the localized coberent structures of the model is caused by the entrance of two variable-separated arbitrary functions.for some special selections of the arbitrary functions,it is shown that the localized structures of the model may be dromions,lumps,breathers,instantons and ring solitons.  相似文献   

3.
In this paper,the variable separation approach is used to obtain localized coherent structures of the (2 1)-dimensional generalized Davey-Stewarson equations:iqt 1/2(qxx=qyy) (R S)q=0,Rx=-σ/2|q|y^2,Sy=-σ/2|q|2/x.Applying a special Baecklund transformation and introducing arbitrary functions of the seed solutions.and abundance of the localized structures of this model is derived,By selceting the arbitrary functions appropriately,some special types of localized excitations such as dromions,dromion lattice,breathers,and instantons are constructed.  相似文献   

4.
We obtain Backlund transformation and some new kink-like solitary wave solutions for the generalized Burgers equation in (2 1)-dimensional space,ut 1/2(uδy^-1ux)x-uxx=0,by using the extended homogeneous balance method.As is well known,the introduction of the concept of dromions (the exponentially localized solutions in (2 1)-dimensional space)has triggered renewed interest in (2 1)-dimensional soliton systems.The solutions obtained are used to show that the variable ux admits exponentially localized solutions rather than the physical field u(x,y,t) itself.In addition,it is shown that the equation passes Painleve test.  相似文献   

5.
Using the standard truncated Painleve analysis,we can obtain a Backlund transformation of the (3 1)-dimensional Nizhnik-Novikov-Veselov (NNV) equation and get some(3 1)-dimensional single-,two- and three-soliton solutions and some new types of multisoliton solutions of the (3 1)-dimensional NNV system from the Backlund transformation and the trivial vacuum solution.  相似文献   

6.
Using the standard truncated Painleve expansions,we derive a quite general solution of the (2 1)-dimensional generalized Ablowitz-Kaup-Newell-Segur system.Except for the usual localized solutions,such as dromions,lumps,ring soliton solutions,etc,some special localized excitations with fractal behaviour i.e.the fractal dromion and fractal lump excitations,are obtained by some types of lower-dimensional fractal patterns.  相似文献   

7.
林机 《中国物理快报》2002,19(6):765-768
Using the standard truncated Painleve analysis and the Backlund transformation,we can obtain many significant exact soliton solutions of the (2 1)-dimensional higher-order Broer-Kaup(HBK) system.A special type of soliton solution is described by the variable coefficient heat-conduction-liker equation.The inclusion of three arbitrary functions in the general expressions of the solitons makes the solitons of the (2 1)-dimensional HBK system possess abundant structures such as solitoff solutions,multi-dromion solutions,ring solitons and so on.  相似文献   

8.
Using the extended homogeneous balance method, we obtained abundant exact solution structures of the (3 1)-dimensional breaking soliton equation. By means of the leading order term analysis, the nonlinear transformations of the (3 1)-dimensional breaking soliton equation are given first, and then some special types of single solitary wavesolutions and the multisoliton solutions are constructed.  相似文献   

9.
Considering that the multi-linear variable separation approach has been proved to be very useful to solve many (2 1)- dimensional intergrable systems,we obtain the variable separation solutions of the Burgers eqation with arbitrary number of variable separated functions.The Y-shaped soliton fusion phenomenon is revealed.  相似文献   

10.
A simple algebraic transformation relation of a special type of solution between the (3 1)-dimensional Kadomtsev-petviashvili(KP) equation and the cubic nonlinear Klein-Gordon equation (NKG) is established.Using known solutions of the NKG equation,we can obtain many soliton solutions and periodic solution of the (3 1)-dimensional KP equation.  相似文献   

11.
From the variable separation solution and by selecting appropriate functions, a new class of localized coherent structures consisting of solitons in various types are found in the (2 1)-dimensional long-wave-short-wave resonance interaction equation. The completely elastic and non-elastic interactive behavior between the dromion and compacton, dromion and peakon, as well as between peakon and compacton are investigated. The novel features exhibited by these new structures are revealed for the first time.  相似文献   

12.
Based on the computerized symbolic system Mapte, a new generalized expansion method of Riccati equation for constructing non-travelling wave and coefficient functions‘ soliton-like solutions is presented by a new general ansatz. Making use of the method, we consider the (2 1)-dimensional breaking soliton equation, ut buxxy 4buvx 4buxv = O,uv=vx, and obtain rich new families of the exact solutions of the breaking sofiton equation, including then on-traveilin~ wave and constant function sofiton-like solutions, singular soliton-like solutions, and triangular function solutions.  相似文献   

13.
A new (2+1)-dimensional KdV equation is constructed by using Lax pair generating technique. Exact solutions of the new equation are studied by means of the singular manifold method. Bgcklund transformation in terms of the singular manifold is obtained. And localized structures are also investigated.  相似文献   

14.
15.
Chaos and Fractals in a (2+1)—Dimensional Soliton System   总被引:7,自引:0,他引:7       下载免费PDF全文
Considering that there are abundant coherent solitent soliton excitations in high dimensions,we reveal a novel phenomenon that the localized excitations possess chaotic and fractal behaviour in some(2 1)-dimensional soliton systems.To clarify the interesting phenomenon,we take the generalized(2 1)-dimensional Nizhnik-Novikov-Vesselov system as a concrete example,A quite general variable separation solutions of this system is derived via a variable separation approach first.then some new excitations like chaos and fractals are derived by introducing some types of lower-dimensional chaotic and fractal patterns.  相似文献   

16.
By means of the heat conduction equation and the standard truncated Painleve expansion,the (1 1)-dimensional Kupershmidt equation is solved.Some significant exact multi-soliton solutions are given.Especially,for the interaction of the multi-solitons of the Kupershmidt equation,we find that a single(resonant)kink or bell soliton may be fissioned to several kink or bell solitons,Inversely,several kink or bell solitons may also be fused to one kink or bell soliton.  相似文献   

17.
In this paper, we use the classical Lie group symmetry method to get the Lie point symmetries of the (2+1)-dimensional hyperbolic nonlinear Schr6dinger (HNLS) equation and reduce the (2+1)-dimensional HNLS equation to some (1 + 1 )-dimensional partial differential systems. Finally, many exact travelling solutions of the (2+1)-dimensional HNLS equation are obtained by the classical Lie symmetry reduced method.  相似文献   

18.
A new nonlinear partial differential equation (PDE) in 2+1 dimensions is obtained from the mKP equation by means of an asymptotically exact reduction method based on Fourier expansion and spatio-temporal resealing. In order to demonstrate integrability property of the new equation, the corresponding Lax pair is obtained by applying the reduction technique to the Lax pair of the mKP equation.  相似文献   

19.
We present the bilinear equivalence expression of a (2+1)-dimensional integrable equation of a classical spin system. Based on this, we construct its single-soliton solutions and two-soliton solutions by Hirota's bilinear method. Meanwhile we show the evolution and propagation manners of two-solitons of the spin system graphically.  相似文献   

20.
The extended homoclinic test function method is a kind of classic, efficient and well-developed method to solve nonlinear evolution equations. In this paper, with the help of this approach, we obtain new exact solutions (including kinky periodic solitary-wave solutions, periodic soliton solutions, and cross kink-wave solutions) for the new (2+1)-dimensional KdV equation. These results enrich the variety of the dynamics of higher-dimensionai nonlinear wave field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号