首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic growth and characterization of gallium nitride nanowires.   总被引:12,自引:0,他引:12  
The preparation of high-purity and -quality gallium nitride nanowires is accomplished by a catalytic growth using gallium and ammonium. A series of catalysts and different reaction parameters were applied to systematically optimize and control the vapor-liquid-solid (VLS) growth of the nanowires. The resulting nanowires show predominantly wurtzite phase; they were up to several micrometers in length, typically with diameters of 10-50 nm. A minimum nanowire diameter of 6 nm has been achieved. Temperature dependence of photoluminescence spectra of the nanowires revealed that the emission mainly comes from wurtzite GaN with little contribution from the cubic phase. Moreover, the thermal quenching of photoluminescence was much reduced in the GaN nanowires. The Raman spectra showed five first-order phonon modes. The frequencies of these peaks were close to those of the bulk GaN, but the modes were significantly broadened, which is indicative of the phonon confinement effects associated with the nanoscale dimensions of the system. Additional Raman modes, not observed in the bulk GaN, were found in the nanowires. The field emission study showing notable emission current with low turn-on field suggests potential of the GaN nanowires in field emission applications. This work opens a wide route toward detailed studies of the fundamental properties and potential applications of semiconductor nanowires.  相似文献   

2.
A simple galvanic reduction for direct growth of Au nanowires on silicon wafers is developed. The nanowires were prepared by reacting HAuCl4aq with Sns in the presence of CTACaq (cetyltrimethylammonium chloride) and NaNO3aq, which were important to the product morphology development. The nanowire diameter was 50-100 nm, and the length was more than 20 microm.  相似文献   

3.
在1000 ℃用活性炭把二氧化锡粉末还原成单质锡, 锡作为催化剂, 硅片作为硅源同时作为收集衬底, 在硅片上制备出了非晶SiO2纳米灯笼. 灯笼的一端连在硅片上, 另一端为一个锡球, 中间是一些圆弧状的SiO2纳米线把两端相连. 纳米灯笼具有良好的对称性. 利用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED) 和HRTEM自带的能谱分析仪(EDS)对样品的表面形貌、微观结构和成分进行了分析研究. 结果表明, 灯笼中SiO2纳米线为非晶态, 结点是晶态锡, 结点表面覆盖一层非晶态的硅的氧化物. 结合实验条件对纳米灯笼的生长机理进行了讨论, 提出了纳米灯笼生长的一个模型.  相似文献   

4.
大长径比ZnS纳米线的制备、结构和生长机理   总被引:2,自引:0,他引:2  
通过碳热辅助化学气相沉积法, 以Au作为催化剂, 在较低温度(800 益)制备了ZnS纳米线, 其尺寸均匀, 表面光滑, 直径约为40 nm, 具有很大的长径比, 是典型的单晶纤锌矿六方结构. 高分辨透射电镜和选区电子衍射分析表明, 纳米线的生长方向为[1100], 与已报道的生长方向不同. 纳米线的生长是由气-液-固(vapor-liquid-solid)机理控制的.  相似文献   

5.
Teo BK  Li CP  Sun XH  Wong NB  Lee ST 《Inorganic chemistry》2003,42(21):6723-6728
It was demonstrated that zeolite can be used as a pseudo-template to grow very fine and uniform silicon nanostructures via disproportionation reaction of SiO by thermal evaporation. Three distinct types of composite nanowires and nanotubes of silicon and silica were grown on the surfaces of zeolite Y pellets. The first type is formed by an ultrafine crystalline silicon nanowire sheathed by an amorphous silica tube (a silicon nanowire inside a silica nanotube). The second type is formed by a crystalline silicon nanotube filled with amorphous silica (a silicon nanotube outside a silica nanowire). The third type is a biaxial silicon-silica nanowire structure with side-by-side growth of crystalline silicon and amorphous silica. These silicon nanostructures exhibit unusually intense photoluminescence (in comparison to ordinary silicon nanowires).  相似文献   

6.
The thermal properties of single-crystalline Bi nanowire arrays with different orientations and diameters were studied by differential scanning calorimeter and in situ high-temperature X-ray diffraction. Bi nanowires were fabricated by a pulsed electrodeposition technique within the porous anodic alumina membrane. The relationships between the orientation and diameter of Bi nanowires and the corresponding thermal properties are deduced solely from experimental results. It is shown that the melting point decreases with decreasing nanowire diameter, and there is an anisotropic thermal expansion property of Bi nanowires with different orientations and diameters. The transition of the thermal expansion coefficient from positive at low temperature to negative at high temperature for Bi nanowire arrays was analyzed and discussed.  相似文献   

7.
Ultralong cadmium oxide nanowires were synthesized in high yield on gold-coated silicon substrates by using a vapor transport process. Cadmium vapor generated by the carbothermal reduction of CdO powder in a tube furnace heated to 500 degrees C was carried to the substrate zone by an argon flow with a trace amount of oxygen. The CdO nanowires grew via a vapor-liquid-solid growth mechanism. The diameters of the nanowires are approximately 40-80 nm, and can reach lengths of 30-50 mum. Because the nanowire formation was gold particle catalyzed, patterned nanowire growth on substrates can be achieved. These nanowires grew along the [111] direction and have slightly rough surfaces due to the presence of crystalline CdO shells formed via a physical vapor deposition process. Interesting CdO nanowires with a necklace-like morphology were also observed in a small region of the substrate, where the oxygen supply may be ample to facilitate the lateral growth of rhombohedron-shaped crystals over the straight wires. Electron diffraction and high-resolution TEM results suggest that these side crystals should grow epitaxially on the wire surfaces. The band gap of the CdO nanowires with smoother surfaces was determined to be approximately 2.53 eV. These nanowires exhibit a relatively weak emission band centered at approximately 550 nm.  相似文献   

8.
Wang F  Dong A  Sun J  Tang R  Yu H  Buhro WE 《Inorganic chemistry》2006,45(19):7511-7521
The serendipitously discovered solution-liquid-solid (SLS) mechanism has been refined into a nearly general synthetic method for semiconductor nanowires. Purposeful control of diameters and diameter distributions is achieved. The synthesis proceeds by a solution-based catalyzed-growth mechanism in which nanometer-scale metallic droplets catalyze the decomposition of metallo-organic precursors and crystalline nanowire growth. Related growth methods proceeding by the analogous vapor-liquid-solid (VLS) and supercritical fluid-liquid-solid (SFLS) mechanisms are known, and the relative attributes of the methods are compared. In short, the VLS method is most general and appears to afford nanowires of the best crystalline quality. The SLS method appears to be advantageous for producing the smallest nanowire diameters and for variation and control of surface ligation. The SFLS method may represent an ideal compromise. Recent results for SLS growth are summarized.  相似文献   

9.
Large-area highly oriented SiC nanowire arrays have been fabricated by chemical vapor reaction using an ordered nanoporous anodic aluminum oxide (AAO) template and a graphite reaction cell. Their microstructures were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and high-resolution transmission electron microscopy. The results show that the nanowires are single-crystalline beta-SiC's with diameters of about 30-60 nm and lengths of about 8 microm, which are parallel to each other, uniformly distributed, highly oriented, and in agreement with the nanopore diameter of the applied AAO template. The nanowire axes lie along the [111] direction and possess a high density of planar defects. Some unique optical properties are found in the Raman spectroscopy and photoluminescence emission from oriented SiC nanowire arrays, which are different from previous observations of SiC materials. The growth mechanism of oriented SiC nanowire arrays is also analyzed and discussed.  相似文献   

10.
Synthesis and Characterization of ZnO Nanowires   总被引:1,自引:0,他引:1  
Zinc oxide is a wide bandgap (3.37 eV) semiconductor with a hexagonal wurtzite crystal structure. ZnO prepared in nanowire form may be used as a nanosized ultraviolet light-emitting source. In this study, ZnO nanowires were prepared by vapor-phase transport of Zn vapor onto gold-coated silicon substrates in a tube furnace heated to 900 ?C. Gold serves as a catalyst to capture Zn vapor during nanowire growth. Size control of ZnO nanowires has been achieved by varying the gold film thickness…  相似文献   

11.
ZnO纳米线形态对其光致发光性能的影响   总被引:1,自引:0,他引:1  
黄新民  任鑫  朱泓 《应用化学》2007,24(3):353-356
以多孔氧化铝膜为模板,电化学沉积出Zn纳米线,再通过高温氧化得到ZnO纳米线阵列。通过改变制备多孔氧化铝模板的工艺参数来改变模板纳米孔径,进而改变ZnO纳米线的直径,得到不同形态的ZnO纳米线阵列。应用X射线衍射仪、透射电子显微镜测试技术表征了ZnO纳米线的结构与形貌。结果发现,X射线衍射时会出现随ZnO纳米线直径增大衍射峰增多和增强的现象。采用荧光光谱仪测试样品的光致发光性能,通过Gaussian原理对谱峰的拟合分析了ZnO纳米线形态对其光致发光光谱的影响。结果表明,随着纳米线直径从30nm至60nm依次增大,其结晶性和化学计量比逐渐变好。近紫外区和蓝光区的发射峰随着纳米线直径的增大而蓝移,而纳米线直径为60nm的样品则出现随直径增大而红移的现象。结果可见,直径在55~60nm间的某点将是ZnO纳米线的结构和光致发光性能变化的临界点。  相似文献   

12.
Vapor-liquid-solid (VLS) is a well-established process in catalyst-guided growth of nanowires. The catalyst particle is generally believed to be in liquid state during growth, and it is the site for adsorbing incoming molecules; the crystalline structure of the catalyst may not have any influence on the structure of the grown one-dimensional nanostructures. In this paper, using tin particle guided growth of ZnO nanostructures as a model system, we show that the interfacial region of the tin particle with the ZnO nanowire/nanobelt could be ordered (or partially crystalline) during the VLS growth, although the local growth temperature is much higher than the melting point of tin, and the crystallographic lattice structure at the interface is important in defining the structural characteristics of the grown nanowires and nanobelts. The interface prefers to take the least lattice mismatch; thus, the crystalline orientation of the tin particle may determine the growth direction and the side surfaces of the nanowires and nanobelts. This result may have important impact on the understanding of the physical chemical process in the VLS growth.  相似文献   

13.
Aligned SiC-C coaxial nanocables were synthesized via the direct growth of SiC nanowires from silicon substrates and subsequent carbon deposition using pyrolysis of methane; the average diameter of the SiC nanowire cores is 20 nm; the thickness of the C outer layers is controlled in the range 3-50 nm; the degree of crystalline perfection of the graphitic sheets increases with the thickness.  相似文献   

14.
《Solid State Sciences》2003,5(7):1063-1067
Ordered Al nanowire arrays with the same nanowire density but the diameters decrease radially embedded in one piece of anodic alumina membranes were successfully fabricated by two-step synthesis: electrodeposition of Zn and replacement in AlCl3 solution. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected-area electron diffraction techniques were used to characterize the Al nanowires obtained. SEM and TEM images taken from the different areas of Al nanowire arrays show that we can control the growth of aligned Al nanowires with different diameters in a single process at the same time. The investigation results not only have potential applications in photoelectric devices but also open up a new method for fabricating nano-scale materials.  相似文献   

15.
Thin high-quality gallium nitride (GaN) nanowires were synthesized by a catalytic chemical vapor deposition method. The synthesized GaN nanowires with hexagonal single-crystalline structure had thin diameters of 10-50 nm and lengths of tens of micrometers. The thin GaN nanowires revealed UV bands at 3.481 and 3.285 eV in low-temperature PL measurements due to the recombination of donor-bound excitons and donor-acceptor pairs, respectively. The blue shifts of UV bands in the low-temperature PL measurement were observed, indicating quantum confinement effects in the thin GaN nanowires which have smaller diameters than the exciton Bohr radius, 11 nm. For field emission properties of GaN nanowires, the turn-on field of GaN nanowires was 8.5 V/microm and the current density was about 0.2 mA/cm(2) at 17.5 V/microm, which is sufficient for the applications of field emission displays and vacuum microelectronic devices. Moreover, the GaN nanowires indicated stronger emission stability compared with carbon nanotubes.  相似文献   

16.
利用双槽直流电沉积技术在阳极氧化铝(AAO)模板的纳米孔中获得调制波长为50 和200 nm 的Co/Cu多层纳米线, 多层纳米线的调制波长由电沉积时间控制. 运用扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征纳米线的形貌, Co/Cu多层纳米线的长度约20 μm, 直径约80 nm; 用X射线衍射(XRD)研究多层线的结构; 用振动样品磁强计(VSM)测试纳米线阵列的磁性能; 利用可变磁场结合高灵敏度恒流装置研究巨磁电阻(GMR)特性. 结果表明, Co/Cu多层纳米线具有磁各向异性. 当磁场与纳米线平行和垂直时, 调制波长为50 nm的多层线的矫顽力分别为87500 和34200 A·m-1, 而调制波长为200 nm的多层线阵列的矫顽力分别为28600 和8000 A·m-1. 调制波长为50 nm的多层纳米线的磁电阻变化率高达-%, 而调制波长为200 nm的多层线未产生明显的GMR效应.  相似文献   

17.
Scales of aligned single-crystalline SiC nanowires (SiCNWs) arrays with very small diameter were synthesized by a simple thermal evaporation of ZnS and carbon on silicon wafer. The as-received SiCNWs possess a uniform size distribution centered at approximately 8.0 nm, even with a minimum of approximately 3.0 nm. The highly oriented SiCNWs usually grew along [111] direction with a clean surface, very thin oxide shell, and small quantity of stacking faults. A crystalline tube-like SiC nanostructure is also obtained. The optical properties, including photoluminescence and Raman scattering spectra of the SiCNWs, were investigated, respectively. In the end, a growth model on basis of the experimental data is suggested.  相似文献   

18.
ZnS nanowires were successfully synthesized through the direct reaction of Zn and S vapor via carbon-assisted chemical evaporation deposition method with Au catalyst. The investigations indicated that the size of ZnS nanowires with a diameter of approximately 40 nm was uniform along the axis of the wire and the surfaces were slick. The ZnS nanowire with a hexagonal wurtzite structure was a typical single crystalline structure. HRTEM and SEAD results demonstrated that the nanowire grew along [100] direction, which was different from the common direction reported in literatures. The growth of nanowires was controlled by vapor-liquid-solid (VLS) mechanism.  相似文献   

19.
Fang F  Zhao D  Shen D  Zhang J  Li B 《Inorganic chemistry》2008,47(2):398-400
Ultrathin ZnO nanowire bundles have been synthesized on an indium-tin oxide substrate without any catalyst by using a simple thermal evaporation method, where self-organized ZnO nanowire bundles were grown on the hexagonal heads of ZnO nanocolumns. The nanowires obtained typically have diameters of 8 nm, with lengths extending to 0.25 microm. The size is the same order of magnitude as the ZnO exciton Bohr radius (aB). Room-temperature photoluminescence measurement shows a prominent peak at 374 nm (3.32 eV), which is about 100 meV blue-shifted from the bulk ZnO emission.  相似文献   

20.
Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays   总被引:1,自引:0,他引:1  
Ordered arrays of Bi/Sb superlattice nanowires with diameters of about 50 nm have been produced by pulsed electrodeposition technique into the pores of anodic alumina membrane (AAM). The structure of Bi/Sb superlattice nanowire can be modulated by controlling the electrodeposition conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号