首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
谢涛  沈涛  WilliamPerrie  陈伟  旷海兰 《中国物理 B》2010,19(5):54102-054102
To study the electromagnetic (EM) backscatter characteristics of freak waves at moderate incidence angles, we establish an EM backscattering model for freak waves in (1+1)-dimensional deep water. The nonlinear interaction between freak waves and Bragg short waves is considered to be the basic hydrodynamic spectra modulation mechanism in the model. Numerical results suggest that the EM backscattering intensities of freak waves are less than those from the background sea surface at moderate incidence angles. The normalised radar cross sections (NRCSs) from freak waves are highly polarisation dependent, even at low incidence angles, which is different from the situation for normal sea waves; moreover, the NRCS of freak waves is more polarisation dependent than the background sea surface. NRCS discrepancies between freak waves and the background sea surface with using horizontal transmitting horizomtal (HH) polarisation are larger than those with using vertical transmitting vertical (VV) polarisation, at moderate incident angles. NRCS discrepancies between freak waves and background sea surface decreases with the increase of incidence angle, in both HH and VV polarisation radars. As an application, in the synthetic-aperture radar (SAR) imaging of freak waves, we suggest that freak waves should have extremely low backscatter NRCSs for the freak wave facet with the strongest slope. Compared with the background sea surface, the freak waves should be darker in HH polarisation echo images than in VV echo images, in SAR images. Freak waves can be more easily detected from the background sea surface in HH polarisation images than in VV polarisation images. The possibility of detection of freak waves at low incidence angles is much higher than at high incidence angles.  相似文献   

2.
谢涛  方贺  赵立  于文金  何宜军 《中国物理 B》2017,26(5):54102-054102
Studies of surface film medium on the sea surface are carried out in this paper for developing the technology to automatically detect and classify sea surface films, and an effective dielectric constant model of electromagnetic backscattering from a stratified air–ocean interface. Numerical results of the new model show the characteristics of effective dielectric constants for the air–sea surface film–sea water medium as follows. The effective dielectric constants decrease with increasing relative dielectric constants of the sea surface films. The effective dielectric constants decrease in horizontal polarization(abbr. HH polarization) and increase in VV vertical polarization(abbr. VV polarization) with increasing radar incident angle. Effective dielectric constants vary with relative sea surface film thickness as a cosinusoidal function of sea surface film thickness. Effective dielectric constant of VV polarization is larger than that of HH polarization. Two potential applications are found with our model, i.e., the retrieval of dielectric constants from the sea surface film, and the film thickness retrieval with our model. Our model has a highly significant influence on improving the technology related to the remote sensing of sea surface films.  相似文献   

3.
In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularly at high sea states. We present a nonlinear fractal sea surface model and derive an electromagnetic backscattering model. Using this model, we numerically calculate the normalized radar cross section (NRCS) of a nonlinear sea surface. Comparing the averaged NRCS between linear and nonlinear fractal models, we show that the NRCS of a linear fractal sea surface underestimates the NRCS of the real sea surface, especially for sea states with high fractal dimensions, and for dominant ocean surface gravity waves that are either very short or extremely long.  相似文献   

4.
罗根  张民 《中国物理 B》2014,(12):159-165
A breaking wave can exert a great influence on the electromagnetic(EM) scattering result from sea surfaces. In this paper, the process of small-scale wave breaking is simulated by the commercial computational fluid dynamics(CFD)software FLUENT, and the backscattering radar cross section(RCS) of the turbulence structure after breaking is calculated with the method of moments. The scattering results can reflect the turbulent intensities of the wave profiles and can indicate high polarization ratios at moderate incident angles, which should be attributed to the incoherent backscatter from surface disturbance of turbulence structure. Compared with the wave profile before breaking, the turbulence structure has no obvious geometrical characteristic of a plunging breaker, and no sea spikes are present at large incident angles either.In summary, the study of EM scattering from turbulence structure can provide a basis to explain the anomalies of EM scattering from sea surfaces and help us understand the scattering mechanism about the breaking wave more completely.  相似文献   

5.
Microwave backscattering from the sea surface with breaking waves   总被引:4,自引:0,他引:4       下载免费PDF全文
刘叶  魏恩泊  洪洁莉  葛勇 《中国物理》2006,15(9):2175-2179
Based on the effective medium approximation theory of composites, the whitecap-covered sea surface is treated as a medium layer of dense seawater droplets and air. Two electromagnetic scattering models of randomly rough surface are applied to the investigation of microwave backscattering of breaking waves driven by strong wind. The shapes of seawater droplets are considered by calculating the effective dielectric constant of the whitecap layer. The responses of seawater droplets shapes, such as sphere and ellipsoid, to the backscattering coefficient are discussed. Numerical results of the models are in good agreement with the experimental measurements of horizontally and vertically polarized backscattering at microwave frequency 13.9GHz and different incidence angles.  相似文献   

6.
A surface-ship wake model is proposed for calculating the scattering of ship wake from a nonlinear sea surface at a high sea state. Ship waves are simulated based on the Kelvin wave model by the point-source method.A Creamer Ⅱ sea surface based on the Elfouhaily sea spectrum is generated, and breaking waves and foam layer effects are taken into account for the background sea scattering at slight, moderate and high wind speeds.Turbulent bubbles scattering from the ship, which is different from wind-driven bubble breaking, is taken into account with a different concentration distribution using a polynomial fitting function combined with measured data. The surface-ship wake scattering is presented for different wind speeds. Numerical simulations show that ship wake scattering results will be higher when wake bubbles are taken into account. The ship beam is a key parameter that influences the width of the turbulent wake, and results in different scattering characteristics on the scattering image. The wind-induced surface in the presence of breaking waves and whitecaps results in scattering enhancement. This will cause the ship wake signal to be submerged in the back-ground of sea noise, leading to false alarms.  相似文献   

7.
8.
ECHO STRUCTURE OF SOUND SCATTERING BY A FINITE ELASTIC CYLINDER IN WATER   总被引:1,自引:0,他引:1  
In this paper the echo structure of short pulse from finite solid elastic circular cylinder is investigated.Itis emphasized that in the case of oblique incidence the echoes still include two kinds of scattering wave:(1).Geometrical scattering waves,namely corner waves.(2).Elastic scattering waves,i.e.waves related with theelasticity of cylinder.The geometrical scattering waves are the waves reflected form the discontinuities ofcylinder,and essentially independent of the material of cylind.Using Kirchhoff approximation therepresentation of corner waves from rigid cylinder has been derived.In the case of oblique incidence theelastic scattering waves differ from the circumferential waves for an infinite cylinder.Two sorts of echoescaused by the reradiation of elastic surface wave have been obeerved in experiments;the radial surfacebackscattering wave and the longitudinal surface backscattering wave,They can be identified according to the arriving time and appearing angle,and the results of a comparable obse  相似文献   

9.
郭立新  王蕊  吴振森 《中国物理 B》2010,19(4):44102-044102
Compared with scattering from a rough surface only, composite scattering from a target above a rough surface has become so practical that it is a subject of great interest. At present, this problem has been solved by some numerical methods which will produce an enormous calculation amount. In order to overcome this shortcoming, the reciprocity theorem (RT) and the method of equivalent edge currents (MEC) are used in this paper. Due to the advantage of RT, the difficulty in computing the secondary scattered fields is reduced. Simultaneously, MEC, a high-frequency method with edge diffraction considered, is used to calculate the scattered field from the cone-cylinder target with a high accuracy and efficiency. The backscattered field and the polarization currents of the rough sea surface are evaluated by the Kirchhoff approximation (KA) method and physical optics (PO) method, respectively. The effects of the backscattering radar cross section (RCS) and the Doppler spectrum on the size of the target and the windspeed of the sea surface for different incident angles are analysed in detail.  相似文献   

10.
张彦敏  王运华  赵朝方 《中国物理 B》2010,19(8):84103-084103
It is well known that the sea return echo contains contributions from at least two scattering mechanisms. In addition to the resonant Bragg scattering, the specular point scattering plays an important role as the incidence angle becomes smaller (≤20o). Here, in combination with the Kirchhoff integral equation of scattering field and the stationary phase approximation, analytical expressions for Doppler shift and spectral bandwidth of specular point scattering, which are insensitive to the polarization state, are derived theoretically. For comparison, the simulated results related to the two-scale method (TSM) and the method of moment (MOM) are also presented. It is found that the Doppler shift and the spectral bandwidth given by TSM are insufficient at small incidence angles. However, a comparison between the analytical results and the numerical simulations by MOM in the backscatter configuration shows that our proposed formulas are valid for the specular point scattering case. In this work, the dependences of the predicted results on incidence angle, radar frequency, and wind speed are also discussed. The obtained conclusions seem promising for a better understanding of the Doppler spectra of the specular point scattering fields from time-varying sea surfaces.  相似文献   

11.
In this paper, based on the fundamental formulae of the first-order and second-order Kirchhoff approx-imation mad with consideration of the shadowing effect, the backscattering enhancement of the one-dimensional very rough fractal sea surface with Pierson-Moskowitz spectrum is studied under the second-order Kirchhoff approximation at microwave frequency. The numerical results are compared with those of the first-order Kirchhoff approximation and integral equation method. The dependencies of the bistatic scattering cross section and the backscattering enhancement on the incident angle, fractal dimension, and windspeed over the sea surface are analyzed in detail.  相似文献   

12.
钟剑  黄思训  杜华栋  张亮 《中国物理 B》2011,20(3):34301-034301
Scatterometer is an instrument which provides all-day and large-scale wind field information, and its application especially to wind retrieval always attracts meteorologists. Certain reasons cause large direction error, so it is important to find where the error mainly comes. Does it mainly result from the background field, the normalized radar cross-section (NRCS) or the method of wind retrieval? It is valuable to research. First, depending on SDP2.0, the simulated `true' NRCS is calculated from the simulated 'true' wind through the geophysical model function NSCAT2. The simulated background field is configured by adding a noise to the simulated 'true' wind with the non-divergence constraint. Also, the simulated 'measured' NRCS is formed by adding a noise to the simulated 'true' NRCS. Then, the sensitivity experiments are taken, and the new method of regularization is used to improve the ambiguity removal with simulation experiments. The results show that the accuracy of wind retrieval is more sensitive to the noise in the background than in the measured NRCS; compared with the two-dimensional variational (2DVAR) ambiguity removal method, the accuracy of wind retrieval can be improved with the new method of Tikhonov regularization through choosing an appropriate regularization parameter, especially for the case of large error in the background. The work will provide important information and a new method for the wind retrieval with real data.  相似文献   

13.
Based on the double superimposition model, a sea slope model is obtained on the basis of the generated oceanic surface instead of being assumed as a Gaussian distribution model. Then, a summation formula of the backscattering coefficient is derived from the Bass Fuks two-scale model and its application is extended to the non-Gaussian oceanic surface with the help of simulated sea slopes, which can adequately reflect the non-Gaussian configuration of the sea surface. Finally, this scattering model is employed to describe the baekscattering configuration of sea surfaces in different sea states and wind directions, and is confirmed by several numerical examples.  相似文献   

14.
We have generated a second-harmonic generation(SHG) of a Q-switched microchip Nd:YAG laser on the surface of a periodically poled LiNbO3(PPLN) nonlinear crystal near the grazing incidence angle.Three individual SHG waves as transmitted homogeneous,inhomogeneous and reflected radiations have been generated and their intensities are measured and characterized within a desirable range of about 10 different incidence angles of the Nd:YAG laser as pump source on the PPLN surface.The basic of surface nonlinear radiation is also investigated and similar results are calculated and extracted from the theory.Comparison between calculated and measured data shows that they are in good agreement with each other.  相似文献   

15.
We have generated a second-harmonic generation (SHG) of a Q-switched microchip Nd:YAG laser on the surface of a periodically poled LiNbO3 (PPLN) nonlinear crystal near the grazing incidence angle. Three individual SHC waves as transmitted homogeneous, kthomogeneous and reflected radiations have been generated and their intensities are measured and characterized within a desirable range of about 10 different incidence angles of the Nd:YAG laser as pump source on the PPLN surface. The basic of surface nonlinear radiation is also investigated and similar results are calculated and extracted from the theory. Comparison between calculated and measured data shows that they are in good agreement with each other.  相似文献   

16.
Based on the skewness of sea waves, a modified two-scale model is developed for the non-Gaussian sea surface scattering. In this new model, a complementary term is added to the first-order scattering coefficient of the classical small perturbation method (SPM), the additional part is proportional to the surface bispectrum and it is the critical part in explaining the scattering difference between upwind and downwind observations. Meanwhile, the effects of the shadowing function of the anisotropic surface, the curvature of the surface are also taken into account. The numerical results show the theoretical estimates obtained are consistent with the experimental result, and the influence of the wind speed, the trend and the incident frequency on the backscattering coefficients from the non-Gaussian oceanic surface is discussed in detail.  相似文献   

17.
Extremely powerful astrophysical electromagnetic(EM) systems could be possible sources of highfrequency gravitational waves(HFGWs). Here, based on properties of magnetars and gamma-ray bursts(GRBs), we address "Gamma-HFGWs"(with very high-frequency around 10~(20) Hz) caused by ultra-strong EM radiation(in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields(~10~(11) T).By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density ?gw around10~(-6), and they would cause perturbed signal EM waves of~10~(-20) W/m~2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future.  相似文献   

18.
A technique capable of focusing and bending electromagnetic (EM) waves through plasmonic gratings with equally spaced alternately tapered slits has been introduced. Phase resonances are observed in the optical response of transmission gratings, and the EM wave passes through the tuning slits in the form of surface plasmon polaritons (SPPs) and obtains the required phase retardation to focus at the focal plane. The bending effect is achieved by constructing an asymmetric phase front which results from the tapered slits and gradient refractive index (GRIN) distribution of the dielectric material. Rigorous electromagnetic analysis by using the two-dimensional (2D) finite difference time domain (FDTD) method is employed to verify our proposed designs. When the EM waves are incident at an angle on the optical axis, the beam splitting effect can also be achieved. These index-modulated slits are demonstrated to have unique advantages in beam manipulation compared with the width-modulated ones. In combination with previous studies, it is expected that our results could lead to the realization of ootimum designs for plasmonic nanolenses.  相似文献   

19.
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface,a fractal sea surface wave–current model is derived,based on the mechanism of wave–current interactions.The numerical results show the effect of the ocean current on the wave.Wave amplitude decreases,wavelength and kurtosis of wave height increase,spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave.By comparison,wave amplitude increases,wavelength and kurtosis of wave height decrease,spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave.The wave–current interaction effect of the ocean current is much stronger than that of the nonlinear wave–wave interaction.The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface.The effect of the current on skewness of the probability distribution function is negligible.Therefore,the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal.  相似文献   

20.
秦希峰  陈明  王雪林  梁毅  张少梅 《中国物理 B》2010,19(11):113501-113501
The erbium ions at energy of 400 keV and dose of 5×10 15 ions/cm 2 were implanted into silicon single crystals at room temperature at the angles of 0,45 and 60.The lateral spread of 400 keV erbium ions implanted in silicon sample was measured by the Rutherford backscattering technique.The results show that the measured values were in good agreement with those obtained from the prediction of TRIM’98 (Transport of Ions in Matter) and SRIM2006 (Stopping and Range of Ions in Matter) codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号