首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Any ensemble of random walks with symmetric transition probabilities will have symmetric properties. However, any single realization of such a random walk may be asymmetric. In an earlier paper, Weiss and Weissman developed a measure of asymmetry and applied it to random walks in the absence of a field, showing that the degree of asymmetry (in the diffusion limit) is independent of time and that the most probable degree of asymmetry corresponds to the maximum possible. We show in the present paper how the presence of a symmetric field can change this result, both in making the degree of asymmetry depend on time, and driving the random walk toward a more symmetric state.  相似文献   

2.
Coupled continuous time random walks (CTRWs) model normal and anomalous diffusion of random walkers by taking the sum of random jump lengths dependent on the random waiting times immediately preceding each jump. They are used to simulate diffusion-like processes in econophysics such as stock market fluctuations, where jumps represent financial market microstructure like log returns. In this and many other applications, the magnitude of the largest observations (e.g. a stock market crash) is of considerable importance in quantifying risk. We use a stochastic process called a coupled continuous time random maxima (CTRM) to determine the density governing the maximum jump length of a particle undergoing a CTRW. CTRM are similar to continuous time random walks but track maxima instead of sums. The many ways in which observations can depend on waiting times can produce an equally large number of CTRM governing density shapes. We compare densities governing coupled CTRM with their uncoupled counterparts for three simple observation/wait dependence structures.  相似文献   

3.
A new model of quantum random walks is introduced, on lattices as well as on finite graphs. These quantum random walks take into account the behavior of open quantum systems. They are the exact quantum analogues of classical Markov chains. We explore the “quantum trajectory” point of view on these quantum random walks, that is, we show that measuring the position of the particle after each time-step gives rise to a classical Markov chain, on the lattice times the state space of the particle. This quantum trajectory is a simulation of the master equation of the quantum random walk. The physical pertinence of such quantum random walks and the way they can be concretely realized is discussed. Differences and connections with the already well-known quantum random walks, such as the Hadamard random walk, are established.  相似文献   

4.
The existing estimation of the upper critical dimension of the Abelian Sandpile Model is based on a qualitative consideration of avalanches as self-avoiding branching processes. We find an exact representation of an avalanche as a sequence of spanning subtrees of two-component spanning trees. Using equivalence between chemical paths on the spanning tree and loop-erased random walks, we reduce the problem to determination of the fractal dimension of spanning subtrees. Then the upper critical dimension d u=4 follows from Lawler's theorems for intersection probabilities of random walks and loop-erased random walks.  相似文献   

5.
We study the distribution of the end-to-end distance of continuous-time self-avoiding random walks (CTRW) in dimension four from two viewpoints. From a real-space renormalization-group map on probabilities, we conjecture the asymptotic behavior of the end-to-end distance of a weakly self-avoiding random walk (SARW) that penalizes two-body interactions of random walks in dimension four on a hierarchical lattice. Then we perform the Monte Carlo computer simulations of CTRW on the four-dimensional integer lattice, paying special attention to the difference in statistical behavior of the CTRW compared with the discrete-time random walks. In this framework, we verify the result already predicted by the renormalization-group method and provide new results related to enumeration of self-avoiding random walks and calculation of the mean square end-to-end distance and gyration radius of continous-time self-avoiding random walks.  相似文献   

6.
The previously developed formalism for the calculation of asymptotic properties of multistate random walks is used to study random walks on several inhomogeneous periodic lattices, where the periodically repeated unit cell contains a number of inequivalent sites, as well as on lattices with a random distribution of inequivalent sites. We concentrate on the question whether the random walk properties depend on the spatial arrangement of the sites in the unit cell, or only on the number density of the different types of sites. Specifically we consider lattices with periodic and random arrangements of columns and lattices with periodic and random arrangements of anisotropic scatterers.  相似文献   

7.
Random walks on complex networks, especially scale-free networks, have attracted considerable interest in the past few years. A lot of previous work showed that the average receiving time (ART), i.e., the average of mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) averaged over all starting points in scale-free small-world networks exhibits a sublinear or linear dependence on network order N (number of nodes), which indicates that hub nodes are very efficient in receiving information if one looks upon the random walker as an information messenger. Thus far, the efficiency of a hub node sending information on scale-free small-world networks has not been addressed yet. In this paper, we study random walks on the class of Koch networks with scale-free behavior and small-world effect. We derive some basic properties for random walks on the Koch network family, based on which we calculate analytically the average sending time (AST) defined as the average of MFPTs from a hub node to all other nodes, excluding the hub itself. The obtained closed-form expression displays that in large networks the AST grows with network order as N ln N, which is larger than the linear scaling of ART to the hub from other nodes. On the other hand, we also address the case with the information sender distributed uniformly among the Koch networks, and derive analytically the global mean first-passage time, namely, the average of MFPTs between all couples of nodes, the leading scaling of which is identical to that of AST. From the obtained results, we present that although hub nodes are more efficient for receiving information than other nodes, they display a qualitatively similar speed for sending information as non-hub nodes. Moreover, we show that that AST from a starting point (sender) to all possible targets is not sensitively affected by the sender’s location. The present findings are helpful for better understanding random walks performed on scale-free small-world networks.  相似文献   

8.
We study random walks on large random graphs that are biased towards a randomly chosen but fixed target node. We show that a critical bias strength bc exists such that most walks find the target within a finite time when b > bc. For b < bc, a finite fraction of walks drift off to infinity before hitting the target. The phase transition at b=bc is a critical point in the sense that quantities such as the return probability P(t) show power laws, but finite-size behavior is complex and does not obey the usual finite-size scaling ansatz. By extending rigorous results for biased walks on Galton-Watson trees, we give the exact analytical value for bc and verify it by large scale simulations.  相似文献   

9.

We consider the open quantum random walks on the crystal lattices and investigate the central limit theorems for the walks. On the integer lattices the open quantum random walks satisfy the central limit theorems as was shown by Attal et al (Ann Henri Poincaré 16(1):15–43, 2015). In this paper we prove the central limit theorems for the open quantum random walks on the crystal lattices. We then provide with some examples for the Hexagonal lattices. We also develop the Fourier analysis on the crystal lattices. This leads to construct the so called dual processes for the open quantum random walks. It amounts to get Fourier transform of the probability densities, and it is very useful when we compute the characteristic functions of the walks. In this paper we construct the dual processes for the open quantum random walks on the crystal lattices providing with some examples.

  相似文献   

10.
We consider an ensemble of restricted discrete random walks in 2+1 dimensions. The restriction on the walks is such as to given particles an intrinsic angular momentum. The walks are embedded in a field which affects the mean free path of the walks. We show that the dynamics of the walks is such that second-order effects are described by a discrete form of Schrödinger's equation for particles in a potential field. This provides a classical context of the equation which is independent of its quantum context.  相似文献   

11.
Quantum random walks are the quantum counterpart of classical random walks, and were recently studied in the context of quantum computation. Physical implementations of quantum walks have only been made in very small scale systems severely limited by decoherence. Here we show that the propagation of photons in waveguide lattices, which have been studied extensively in recent years, are essentially an implementation of quantum walks. Since waveguide lattices are easily constructed at large scales and display negligible decoherence, they can serve as an ideal and versatile experimental playground for the study of quantum walks and quantum algorithms. We experimentally observe quantum walks in large systems ( approximately 100 sites) and confirm quantum walks effects which were studied theoretically, including ballistic propagation, disorder, and boundary related effects.  相似文献   

12.
We study persistence probabilities for random walks in correlated Gaussian random environment investigated by Oshanin et al. (Phys Rev Lett, 110:100602, 2013). From the persistence results, we can deduce properties of critical branching processes with offspring sizes geometrically distributed with correlated random parameters. More precisely, we obtain estimates on the tail distribution of its total population size, of its maximum population, and of its extinction time.  相似文献   

13.
Jane Rosa 《Physica A》2007,386(1):54-62
We consider a Brownian particle in a ratchet potential coupled to a modulated environment and subjected to an external oscillating force. The modulated environment is modelled by a finite number N of uncoupled harmonic oscillators. Superdiffusive motion and Levy walks (anomalous random walks) are observed for any N and for low values of the external amplitude F. The coexistence of left and right running states enhances the power α from the time dependence of the mean square displacement (MSD). It is shown that α is twice the average of the power of the separated left and right MSDs. Normal random walks are obtained by increasing F. We show that the maximal mobility of particles along the periodic structure occurs just before superdiffusive motion disappears and Levy walks are transformed into normal random walks.  相似文献   

14.
We investigate the dynamics of random walks on weighted networks. Assuming that the edge weight and the node strength are used as local information by a random walker. Two kinds of walks, weight-dependent walk and strength-dependent walk, are studied. Exact expressions for stationary distribution and average return time are derived and confirmed by computer simulations. The distribution of average return time and the mean-square displacement are calculated for two walks on the Barrat-Barthelemy-Vespignani (BBV) networks. It is found that a weight-dependent walker can arrive at a new territory more easily than a strength-dependent one.  相似文献   

15.
M Khantha  V Balakrishnan 《Pramana》1983,21(2):111-122
We present closed expressions for the characteristic function of the first passage time distribution for biased and unbiased random walks on finite chains and continuous segments with reflecting boundary conditions. Earlier results on mean first passage times for one-dimensional random walks emerge as special cases. The divergences that result as the boundary is moved out to infinity are exhibited explicitly. For a symmetric random walk on a line, the distribution is an elliptic theta function that goes over into the known Lévy distribution with exponent 1/2 as the boundary tends to ∞.  相似文献   

16.
In this paper,we study the scaling for the mean first-passage time(MFPT) of the random walks on a generalized Koch network with a trap.Through the network construction,where the initial state is transformed from a triangle to a polygon,we obtain the exact scaling for the MFPT.We show that the MFPT grows linearly with the number of nodes and the dimensions of the polygon in the large limit of the network order.In addition,we determine the exponents of scaling efficiency characterizing the random walks.Our results are the generalizations of those derived for the Koch network,which shed light on the analysis of random walks over various fractal networks.  相似文献   

17.
《Nuclear Physics B》2002,621(3):675-688
We study random walks on the three-strand braid group B3, and in particular compute the drift, or average topological complexity of a random braid, as well as the probability of trivial entanglement. These results involve the study of magnetic random walks on hyperbolic graphs (hyperbolic Harper–Hofstadter problem), what enables to build a faithful representation of B3 as generalized magnetic translation operators for the problem of a quantum particle on the hyperbolic plane.  相似文献   

18.
近年来量子随机行走相关课题因其非经典的特性,已经成为越来越多科研人员的研究热点。这篇文章中我们回顾了一维经典随机行走和一维量子随机行走模型,并且在分析两种二维经典随机行走模型的基础上,我们构建二维量子随机行走模型。通过对随机行走者的位置分布标准差的计算,我们可以证明基于这种二维量子随机行走模型的算法优于其他上述随机行走。除此之外,我们提出一个利用线性光学方法的实验方案,实现这种二维量子随机行走模型。  相似文献   

19.
We carry out comparative studies of random walks on deterministic Apollonian networks (DANs) and random Apollonian networks (RANs). We perform computer simulations for the mean first-passage time, the average return time, the mean-square displacement, and the network coverage for the unrestricted random walk. The diffusions both on DANs and RANs are proved to be sublinear. The effects of the network structure on the dynamics and the search efficiencies of walks with various strategies are also discussed. Contrary to intuition, it is shown that the self-avoiding random walk, which has been verified as an optimal local search strategy in networks, is not the best strategy for the DANs in the large size limit.  相似文献   

20.
Recently a great deal of effort has been made to explicitly determine the mean first-passage time (MFPT) between two nodes averaged over all pairs of nodes on a fractal network. In this paper, we first propose a family of generalized delayed recursive trees characterized by two parameters, where the existing nodes have a time delay to produce new nodes. We then study the MFPT of random walks on this kind of recursive tree and investigate the effect of the time delay on the MFPT. By relating random walks to electrical networks, we obtain an exact formula for the MFPT and verify it by numerical calculations. Based on the obtained results, we further show that the MFPT of delayed recursive trees is much shorter, implying that the efficiency of random walks is much higher compared with the non-delayed counterpart. Our study provides a deeper understanding of random walks on delayed fractal networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号